Vysoká škola báňská – Technická univerzita Ostrava
Fakulta metalurgie a materiálového inženýrství

DIAGNOSTIKA A ŘÍZENÍ KVALITY ODLITKŮ
studijní opora

Tomáš Elbel

Ostrava 2013
Recenze: Ing. František Mikšovský, CSc.

Název: Diagnostika a řízení kvality odlitků
Autor: prof. Ing. Tomáš Elbel, CSc.
Vydání: první, 2013
Počet stran: 179

Studijní materiály pro studijní program Metalurgické inženýrství na Fakultě metalurgie a materiálového inženýrství.
Jazyková korektura: nebyla provedena.

Studijní opora vznikla v rámci projektu OP VK:
Název: ModIn - Modulární inovace bakalářských a navazujících magisterských programů na Fakultě metalurgie a materiálového inženýrství VŠB - TU Ostrava
Číslo: CZ.1.07/2.2.00/28.0304

© Tomáš Elbel
© VŠB – Technická univerzita Ostrava

POKYNY KE STUDIU

Název předmětu

DIAGNOSTIKA A ŘÍZENÍ KVALITY ODLITKŮ

Pro předmět Diagnostika a řízení kvality odlitků třetího semestru studijního oboru Moderní metalurgické technologie jste obdrželi podklady ke studiu obsahující integrované skriptum pro kombinované studium obsahující i pokyny ke studiu.

1. Prerekvizity

Předmět nemá žádné prerekvizity.

2. Cílem předmětu a výstupy z učení

Vytvořit odborníka pro řízení kvality odlitků ve slévárnách.

Po prostudování předmětu by měl student být schopen:

Výstupy znalostí:
Charakterizovat základní vady odlitků, to je ty, které se v praxi vyskytují ve slévárnách nejčastěji.
Znát základní postupy diagnostiky vad odlitků, s využitím statistických metod identifikovat příčiny vzniku vad.

Výstupy dovedností:
Umět aplikovat teoretické poznatky pro návrh preventivních opatření ke zlepšování kvality
Umět aplikovat znalosti postupů zjišťování vad a kontroly vlastností odlitků.

Pro koho je předmět určen

Předmět je zařazen do magisterského studia oboru Moderní metalurgické technologie studijního programu Metalurgické inženýrství, ale může jej studovat i zájemce z kteréhokoliv jiného oboru.

Při studiu každé kapitoly doporučujeme následující postup:

Přečíst členění kapitoly.
Prostudovat kapitolu s podrobným zaměřením se na schémata, obrázky a především rovnice.

Způsob komunikace s vyučujícími:

Komunikace s vyučujícím je možná pomocí e-mailu: tomas.elbel@vsb.cz nebo telefonicky na čísle: +420 597 324 208.
OBSAH

1 ÚVOD DO ORGANIZACE ŘÍZENÍ KVALITY. KVALITA ODLITKŮ.
KLASIFIKACE VAD ODLITKŮ... 8
 1.1 KVALITA ODLITKŮ .. 10
 1.2 KLASIFIKACE VAD ODLITKŮ .. 11
 1.2.1. VÝVOJ KLASIFIKACE .. 11
 1.2.2. SOUČASNÝ STAV .. 14
 1.3 KVALITA PRODUKTŮ VE SLÉVÁRNÁCH .. 17
 1.4 LITERATURA ... 18

2 MEZINÁRODNÍ NORMY ŘÍZENÍ KVALITY .. 20
 2.1 STRUKTURA ZÁKLADNÍCH NOREM MANAGEMENTU KVALITY 21
 2.2 ZÁKLADNÍ PRINCIPY A POŽADAVKY NORMY ČSN EN ISO 9001:2009 - SYSTÉMY
MANAGEMENTU KVALITY – POŽADAVKY .. 22
 2.3 ZÁVĚR .. 25
 2.4 LITERATURA ... 26

3 NÁSTROJE PLÁNOVÁNÍ A ZLEPŠOVÁNÍ KVALITY 28
 3.1 DIAGRAM PŘÍČIN A NÁSLEDKŮ ... 29
 3.2 KONTROLNÍ TABULKA .. 31
 3.3 HISTOGRAM .. 32
 3.4 PARETŮV DIAGRAM ... 33
 3.5 KORELAČNÍ DIAGRAM .. 34
 3.6 VÝVOJOVÝ DIAGRAM ... 35
 3.7 REGULAČNÍ DIAGRAM ... 38
 3.8 LITERATURA ... 39

4 STATISTICKÉ METODY ŘÍZENÍ KVALITY ODLITKŮ 40
 4.1 CYKLUS PDCA .. 41
 4.2 DENÍK KVALITY (QUALITY JOURNAL) .. 42
 4.3 ANALÝZA ZPŮSOBŮ A DŮSLEDKŮ PORUCH FMEA 42
 4.4 ANALÝZA ZPŮSOBÍLOSTI PROCESŮ ... 44
 4.5 PLÁNOVÁNÍ EXPERIMENTU .. 46
 4.6 LITERATURA ... 47
5 METODY ZJIŠŤOVÁNÍ VAD A KONTROLA KVALITY ODLITKŮ 49

5.1 VIZUÁLNÍ KONTROLA (PROHLÍDKA) ... 50
5.2 MĚŘENÍ, VÁŽENÍ ... 50
5.3 DEFEKTOSKOPIE ... 51
5.4 CHEMICKÉ ROZBORY .. 54
5.5 STRUKTURNÍ ROZBORY .. 56
5.6 ROZBOR VLASTNOSTÍ MATERIÁLU ... 58
5.7 LITERATURA .. 59

6 DIAGNOSTIKA A ŘÍZENÍ KVALITY ODLITKŮ .. 61

6.1 TECHNICKÁ DIAGNOSTIKA ... 61
6.2 DIAGNOSTIKA VAD ODLITKŮ ... 62
6.2.1 ANAMNÉZA .. 63
6.2.2. IDENTIFIKACE VADY ... 63
6.2.3. DIFERENCIÁLNÍ DIAGNOSTIKA .. 65
6.2.4. STANOVENÍ PŘÍČIN VZNIKU VADY, NÁVRH OPATŘENÍ K ODSTRANĚNÍ VADY 65
6.2.5. PREVENTIVNÍ OPATŘENÍ PROTI VZNIKU VADY A JEJICH REALIZACE 66
3.2.6. SHRnutí .. 67
6.3 ÚVOD DO CHARAKTERISTIKY VAD ODLITKŮ ... 67
6.4 LITERATURA .. 71

7 TŘÍDA VAD 100: VADY TVARU ROZMĚRŮ A HMOTNOSTI 73

7.1 SKUPINA VAD 110: CHYBĚJÍCÍ ČÁST ODLITKU BEZ LOMU (110) 74
7.2 SKUPINA VAD: CHYBĚJÍCÍ ČÁST ODLITKU S LOMEM (120) 79
7.3 SKUPINA VAD: NEDODRŽENÍ ROZMĚRŮ, NESPRÁVNÝ TVAR (130) 80
7.4 SKUPINA VAD: NEDODRŽENÍ HMOTNOSTI ODLITKU (140) 86
7.5 LITERATURA .. 86

8 TŘÍDA VAD 200: VADY POVRCHU ... 88

8.1 SKUPINA VAD: PŘÍPEČENINY (210) ... 89
8.2 SKUPINA VAD: ZÁLUPY (220) .. 91
8.3 SKUPINA VAD: NÁROSTY (230) ... 93
8.4 SKUPINA VAD: VÝRONKY 240) ... 96
8.5 SKUPINA VAD: VÝPOTKY (250) ... 98
8.6 SKUPINA VAD: ZATEKLINY (260) ... 98
8.7 SKUPINA VAD: NEPRAVIDELNOSTI POVRCHU ODLITKU (270) 100
8.8 SKUPINA VAD: VADY POVRCHOVÉ OCHRANY ODLITKU (280) 104
8.9 LITERATURA .. 104
9 TŘÍDA VAD 300: PORUŠENÍ SOUVISLOSTI.................................106

9.1 SKUPINY VAD 310: TRHLINY ZA TEPLA..107
9.2 SKUPINA VAD 320: PRASKLINY ZA STHUDEŇA (320)........................111
9.3 SKUPINA VAD 330: PORUŠENÍ SOUVISLOSTI Z DŮVODU MECHANICKÉHO
 POŠKOZENÍ ODLITKU ..113
9.4 SKUPINA VAD 340: PORUŠENÍ SOUVISLOSTI Z DŮVODU NESPOJENÍ KOVU114
9.5 LITERATURA ...115

10 TŘÍDA VAD 400: DUTINY ..116

10.1 SKUPINA VAD 410: BUBLINY ..117
10.2 SKUPINA VAD 420: BODLINY ..120
10.3 SKUPINA VAD 430 : ODVAŘENINY ...122
10.4 SKUPINA VAD 440: STAŽENINY ..125
10.5 LITERATURA ...131

11 TŘÍDA VAD 500: MAKROSKOPICKÉ VMĚSTKY A VADY
 MAKROSTRUKTURY ..133

11.1 SKUPINA VAD 510 STRUSKOVITOST ...134
11.2 SKUPINA VAD 520: NEKOVOVÉ VMĚSTKY137
11.3 SKUPINA VAD 530: MAKROSEGREGACE A ODMÍŠENÍ144
11.4 SKUPINA VAD 540: BROKY ...147
11.5 SKUPINA VAD 550: KOVOVÉ VMĚSTKY148
11.6 LITERATURA ...149

12 TŘÍDA VAD 600: VADY MIKROSTRUKTURY152

12.1 SKUPINA VAD 600: MIKROSKOPICKÉ DUTINY153
12.2 SKUPINA VADY 620: VMĚSTKY ..155
12.3 SKUPINA VAD 630: NESPRÁVNÁ VEĽIKOST ZRNA156
12.4 SKUPINA VAD 640: NESPRÁVNÝ OBSAH STRUKTURNÍCH SLOŽEK157
12.5 SKUPINA VAD 650: ZATVRDĽINA, ZÁKALKA157
12.6 SKUPINA VAD 660: OBRÁCENÁ ZÁKALKA158
12.7 SKUPINA VAD 670: ODUHLIČENÉ POVRCHU159
12.8 SKUPINA VAD 680: JINÉ VADY MIKROSTRUKTURY159
 LITERATURA ...160

12.9 TŘÍDA VAD 700: VADY CHEMICKÉHO SLOŽENÍ A VLASTNOSTI ODLITKŮ161
 SKUPINA VAD 710 NESPRÁVNÉ CHEMICKÉ SLOŽENÍ161
12.10 SKUPINA VAD 720 ODCHYLYKY HODNOT MECHANICKÝCH VLASTNOSTÍ161
12.11 SKUPINA VAD 730 ODCHYLYKY HODNOT FYZIKálnÍCH VLASTNOSTÍ162
12.12 SKUPINA VAD 740 NEVYHOVUJÍCÍ HOMOGENITA ODLITKŮ162
 LITERATURA ..162
Obsah.

13 EXPERTNÍ SYSTÉMY PRO IDENTIFIKACI VAD ODLITKŮ 163

13.1 ÚVOD ... 163
13.2 SEZNÁMENÍ S EXPERTNÍMI SYSTÉMY ... 164
13.3 ZNALOSTNÍ EXPERTNÍ SYSTÉM ESVOD .. 167
13.4 ZÁVĚR ... 172
13.5 LITERATURA .. 172

14 KVALITA ODLITKŮ A NÁKLADY. VÝROBA ODLITKŮ BEZ VAD 173

14.1 KVALITA ODLITKŮ A NÁKLADY ... 173
14.2 VÝROBA ODLITKŮ BEZ VAD ... 175
14.3 APLIKACE VE SLÉVÁRENSTVÍ ... 176
14.4 SHRnutí ... 178
14.5 LITERATURA .. 179
1 ÚVOD DO ORGANIZACE ŘÍZENÍ KVALITY. KVALITA ODLITKŮ. KLASIFIKACE VAD ODLITKŮ.

Členění kapitoly
- Kvalita odlitku
- Klasifikace vad odlitků
 - Vývoj klasifikace
 - Současný stav
- Kvalita produktů ve slévárnách
- Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět
- Definovat pojem vada odlitku.
- Členit vady do tříd a skupin
- Definovat zvláštnosti slévárenské produkce.

Základní pojmy jsou obsahem části „Členění kapitoly“

Výklad

\\(^1\) V češtině se můžeme setkat s pojmy „jakost“ a „kvalita“. Termín kvalita je mezinárodním slovem převzatým z latiny do mnoha jazyků. Z pohledu managementu kvality jsou oba termíny správné a považují se za synonyma. V názvu tohoto předmětu je použit termín kvalita a také ho používá poslední platné mezinárodního standardu ISO řady 9000 a proto v této učebnici je mu dávána přednost před „jakostí“. Na druhé straně Katedra řízení jakosti na FMMI ve všech svých publikacích preferuje české slovo jakost. Jazykový rozbor si zaslouží termín „kontrola“, což je také mezinárodní slovo s původem ve francouzštině. Podle Slovníku cizích slovo je to kontrola, řízení, ovládání, regulace. Ve významu použití kontroly při diagnostice vad odlitků jsou vhodné i další termíny inspekce, detekce.
a nejsou ochotní tolerovat podřadnou kvalitu. Navíc si mohou zboží a služby vybírat z široké nabídky na trhu.

Společnosti a organizace na celém světě zavádějí proto rozsáhlé programy zaměřené na neustálé zlepšování kvality, na prevenci poruch a vad. Zároveň inovují své produkty a zlepšují jejich parametry k lepšímu uspokojení zákazníka. Žádná organizace nebo společnost nemůže kvalitu ignorovat. Investice do zvyšování kvality současně přínáší zlepšení finanční situace a stabilitu firmy. Vzhledem k stále se zvyšujícím nárokům na systém řízení v organizacích byly mezinárodní standardizační organizací ISO zpracovány normy systému managementu kvality řady ISO 9000.

Mnozí současní i potenciální zákazníci slévárenského průmyslu mají mnohdy zkreslenou představu o tom, co lze odléváním dosáhnout a co lze od litého polotovaru očekávat. Slévárenské procesy jsou široce využívány k výrobě velmi hospodárným způsobem a touto zatím nejlepší tvarovou s malým nebo i žádným optickým obráběním. Výroba litého polotovaru obnáší řadu odlitků kovových součástí a těžkých materiálů, ze kterého se má zhotovit, pokud přichází na řadu zpracování technologického postupu odlévání, který obsahuje stanovení polohy odlitku při lití, návrh vtokové soustavy a další opatření k tomu, aby odlitek byl celistvý a „zdravý“, tzn. bez povrchových a vnitřních vad. Rozhodování o přijatém postupu se řídí hlavně konečnou kvalitou odlitku, která určuje náklady produkce. Používání požadavků zákazníků a jeho konstrukce nemusí větší seříznout odlitkové optimálnímu řešení. Často je na slevaci, aby pomohl najít hospodárnější řešení změnou tvaru nebo materiálu součásti.

Ve srovnání se slévárenství budeme těžko hledat jiný výrobní proces, který je tak vnitřně náchylný ke změnám. Různé defekty jsou totiž průvodným jevem příduchu materiálu z tekutého do pevného stavu. Kromě zatím nejlepšího postupu materiálů z tekutého do pevného stavu. Kromě názoru odlitkového materiálu a jeho odláskávání do formy, tehdy může měřít více či méně nákladové struktury při krystalizaci.

Postup jak stanovit diagnózu bývá často chaotický a je založen na riskantní strategii „pokus - omyl“. Timto způsobem se zpravidla nepodaří najít skrytou příčinu vad. Pokud se systematickým přístupem použije správná diagnostika vady odlitku a nalezení vhodného nápadného a preventivního opatření může se rychle dojít k vhodnému řešení minimalizace vad a k úspěchu času a peněz.

V dalších kapitolách této učebnice se proto budeme zabývat diagnóstikou vad, jejich klasifikacemi a popisy.
1.1 Kvalita odlitku

Umět řídit kvalitu znamená umět určit neshodu (vadu). Správná a rychlá diagnostika neshody – vady je klíčem ke snížení nákladů ve slévárně. Jako vadu odlitku označujeme odchylky (neshody) od

- vzhledu,
- tvaru,
- rozměru,
- hmotnosti,
- struktury,
- celistvosti (homogenity) a sjednaných podmínek a norem.

Vady odlitků mohou být:

- Zjevné – jsou takové, které je možné zjistit při prohlídce neopracovaného odlitku prostým okem nebo jednoduchými pomocnými pomocnými měřidly. Většinou se jedná o vady povrchové (vnější),
- Skryté - které lze zjistit až po obrobení odlitku, po, měření rozměrů nebo pomocí vhodných přístrojů a zařízení. Tady jde převážně o vady podpovrchové (vnitřní).

Výraz „vada odlitku“ má význam podmíněný. Podle ustanovení příslušných norem nebo sjednaných technických podmínek může být každá odchylka někdy přípustnou vadou, jindy nepřípustnou vadou, opravitelnou nebo odstranitelnou. Z tohoto hlediska vady odlitků rozlišujeme:

- **Přípustné vady** nejsou na závadu použití odlitků a musí být buď výslovně povoleny, anebo nesmí být alespoň výslovně zakázány.
- **Nepřípustné vady** jsou obvykle jmenovitě uvedeny a jejich výskyt znamená neshodný výrobek a tzv. zmetkování.
- **Opravitelné vady** jsou takové vady, které lze vhodnými způsoby odstranit dodatečnými operacemi, které slévárně provádí na své náklady.
Odlitek s nepřípustnou vadou nazýváme zmetek, tj. nepodařený, vyřazený kus. V závislosti na místě, ve kterém se zmetek zjistí, rozlišujeme zmetky vnitřní (interní) – zjištěné před expedicí odlitku k odběrateli a zmetky vnější (externí) – zjištěné po expedici odlitku u odběratele (po fakturaci). Kromě toho rozlišujeme vady vnitřní (podpovrchové) a vady vnější (povrchové).

Ve slévárenství, více než v jiných oborech je důležité rozlišení pojmů výrobek bez vad, kvalitní odlitek, neshodný výrobek, dodávky bez vad, výroba bez vad. Výroba odlitků bez vad je z důvodů, které zde byly naznačeny zatím jen čílem, ke kterému směřujeme. Na druhé straně je možné zachytit před expedicí skryté vady a zajistit dodávky bez vad (bez vnějších zmetků). Kvalitní odlitek vyhovuje normám a podmínkám předepsaným zákazníkem, neznamená to, že to musí být výrobek bez vad. Určité vady, v určitém množství a v určitých místech nemusí vadit funkčnosti výrobku, nejsou to neshodné výrobky (zmetky). Platí jednoduché pravidlo, které zároveň vyjadřuje vztah mezi kvalitou a náklady:

\[
\text{KVALITNÍ ODLITEK} = \text{TAK DOBRÝ, JAK JE TŘEBA A TAK LEVNÝ, JAK JE TO MOŽNÉ}
\]

1.2 Klasifikace vad odlitků

1.2.1. Vývoj klasifikace vad

Při výskytu určité vady na odlitku sehrává svou významnou roli správné stanovení druhu vady, od kterého pak probíhá další činnost k určení původu vady, ke stanovení příčin a prostředků k zabrání jejího vzniku. Tuto situaci můžeme opět přirovnat k léčbě nemocného člověka. Vyšetření pacienta, zmírnění jeho bolestí a potíží závisí na rychlém stanovení co nejpřesnější diagnózy. Lékařská diagnostika, která chápá určení choroby nemocného tím způsobem, že se podle příznaků (včetně výsledků jednotlivých vyšetření) obraz nemoci vyšetřovaného zařadí do známého a naučeného klasifikačního systému [2]. Lékařská věda používá velmi rozsáhlou terminologii nemoci, která se neustále rozšiřuje s rozvojem vědeckého poznání.

Slévárenští odborníci se rovněž zabývali klasifikací vad – první práce byly zveřejněny již v první polovině 20. století. S rozvojem techniky a poznatků o slévárenských pochodech při vytváření litých polotovarů se klasifikace vad odlitků dále upřesňovala a rozšířovala.

Vad zařazených do 7 skupin, v jejichž rámci se třídí do druhů. Uvedené třídění vad platí pro všechny druhy odlévaných materiálů, bez zřetele ke způsobu výroby a technologie odlévání.

A. Kovové nárosty
B. Dutiny
C. Porušení souvislosti
D. Vázný povrch
E. Neúplný odlitek
F. Nesprávný tvar nebo rozměry
G. Vměstky a nesprávná struktura

Tab. I Roztřídění vad odlitků podle skupin a druhů v ČSN 42 1240

<table>
<thead>
<tr>
<th>Číslo skupiny vad</th>
<th>Název skupiny vad</th>
<th>Číselné označení vady</th>
<th>Název druhu vady</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vady tvaru, rozměrů a váhy</td>
<td>11</td>
<td>Nezaběhnutí</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Přesazení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>Zatekliny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Vyboulení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>Zborcení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>Mechanické poškození</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>Nedodržení rozměrů</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>Nedodržení váhy</td>
</tr>
<tr>
<td>2</td>
<td>Vady povrchu</td>
<td>21</td>
<td>Připečeniny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>Zavaleniny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>Zálupy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>Nárosty, strupy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>Výronky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>Výpotky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>Opálení, okužení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>Omačkání, potlučení, pohmoždění</td>
</tr>
<tr>
<td>3</td>
<td>Porušení souvislosti</td>
<td>31</td>
<td>Trhliny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>Praskliny</td>
</tr>
<tr>
<td>4</td>
<td>Dutiny</td>
<td>41</td>
<td>Bubliny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>Bodliny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43</td>
<td>Staženiny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44</td>
<td>Řediny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>Mikrostaženiny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46</td>
<td>Mikrobuliny</td>
</tr>
<tr>
<td>5</td>
<td>Vměstky</td>
<td>51</td>
<td>Struskovitost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>Zadrobéniny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53</td>
<td>Nekovové vměstky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54</td>
<td>Broky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td>Kovové vměstky</td>
</tr>
<tr>
<td>6</td>
<td>Vady struktury</td>
<td>61</td>
<td>Odmíšení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
<td>Nevyhovující lom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>Zatvrzelnina, zákalka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
<td>Obrácená zákalka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td>Nesprávná struktura</td>
</tr>
<tr>
<td>7</td>
<td>Vady chemického složení, nesprávné fyzikální nebo mechanické vlastnosti</td>
<td>71</td>
<td>Nesprávné chemické složení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>Nevyhovující mechanické vlastnosti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73</td>
<td>Nevyhovující fyzikální vlastnosti</td>
</tr>
</tbody>
</table>
1.2.2. Současný stav

V posledních 20 letech se objevily další monografie ke kvalitě a vadám odlitků, které vychází z pokroku v poznání slévárenských pochodů, využívání moderních laboratorních a detekčních postupů k odhalování defektů a využívají matematické modelování. Podrobnou a bohatou monografii vypracoval Hasse [20] a z četných prací Campbella je to praktická příručka o prevenci vad [21]. U nás na elektronickém nosiči vydal Otáhal Atlas vad železných i neželezných slitin [22].
Tab. II Seznam tříd, skupin a vad odlitků

<table>
<thead>
<tr>
<th>Třída vad</th>
<th>Skupina vad</th>
<th>Druh vad</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Vady tvaru, rozměrů a hmotností</td>
<td>Chybějící část odlitku bez lomu</td>
</tr>
<tr>
<td>110</td>
<td>Poř. čís.: 111</td>
<td>Nezaběhnutí</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 112</td>
<td>Nedolití</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 113</td>
<td>Vytéčený kov</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 114</td>
<td>Špatná oprava formy</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 115</td>
<td>Přetryskaný odlitek</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 116</td>
<td>Omačkání, potlučení, pohmoždění</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 117</td>
<td>Nesprávně upálený, odřezaný a obroušený odlitek</td>
</tr>
<tr>
<td>120</td>
<td>Chybějící část odlitku s lomem</td>
<td>Ulomené část odlitku za tepla</td>
</tr>
<tr>
<td>130</td>
<td>Nedodržení rozměrů, nesprávný tvar</td>
<td>Spatný model</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 132</td>
<td>Přesazení</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 133</td>
<td>Nevyhovující rozměry</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 134</td>
<td>Zborcení, deformace</td>
</tr>
<tr>
<td>140</td>
<td>Nedodržení hmotnosti odlitků</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Připečeniny</td>
<td>Drsný povrch</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 211</td>
<td>Pokrčené povrchové připečeniny</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 212</td>
<td>Hluboké připečeniny, zapečeniny</td>
</tr>
<tr>
<td>220</td>
<td>Zálupy</td>
<td>Zálup na horní plošince formy</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 221</td>
<td>Zálup na dne formy</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 222</td>
<td>Zálupové síťové</td>
</tr>
<tr>
<td>230</td>
<td>Nárosty</td>
<td>Vyboulení</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 231</td>
<td>Odření, shrnutí</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 232</td>
<td>Utržení, sesutí</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 233</td>
<td>Erose</td>
</tr>
<tr>
<td>240</td>
<td>Výronky</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Výpotky</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Zatekliny</td>
<td>Zatekliny způsobené netěsnostmi formy</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 261</td>
<td>Prasklé jádro</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 262</td>
<td>Prasklá forma</td>
</tr>
<tr>
<td>270</td>
<td>Nepravidelnosti povrchu odlitku</td>
<td>Pomerančová kůra</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 271</td>
<td>Zvrásnění povrchu</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 272</td>
<td>Neštovice místní a čárové</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 273</td>
<td>Okužení, opálení</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 274</td>
<td>Krupičky</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 275</td>
<td>Dolíčková a kanálová koroze</td>
</tr>
<tr>
<td></td>
<td>Poř. čís.: 276</td>
<td>Chemická koroze</td>
</tr>
<tr>
<td>280</td>
<td>Vady povrchové ochrany odlitku</td>
<td></td>
</tr>
</tbody>
</table>

Tab. II pokračování 1

<table>
<thead>
<tr>
<th>Třída vad</th>
<th>Skupina vad</th>
<th>Druh vady</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Poř. čís.</td>
<td>Název</td>
</tr>
<tr>
<td>310</td>
<td>Trhliny</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td></td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>320</td>
<td>Praskliny</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>Porušení souvislosti z důvodu mechanického poškození odlitku</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td></td>
<td>332</td>
</tr>
<tr>
<td>340</td>
<td>Porušení souvislosti z důvodu nespojení kovu</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td></td>
<td>342</td>
</tr>
<tr>
<td>410</td>
<td>Bubliny</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td></td>
<td>412</td>
</tr>
<tr>
<td></td>
<td></td>
<td>413</td>
</tr>
<tr>
<td></td>
<td></td>
<td>414</td>
</tr>
<tr>
<td></td>
<td></td>
<td>415</td>
</tr>
<tr>
<td>420</td>
<td>Bodliny</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>Odvařeniny</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>233</td>
</tr>
<tr>
<td>440</td>
<td>Staženiny</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>443</td>
</tr>
<tr>
<td></td>
<td></td>
<td>444</td>
</tr>
<tr>
<td></td>
<td></td>
<td>445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>446</td>
</tr>
<tr>
<td>510</td>
<td>Struskovitost</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512</td>
</tr>
<tr>
<td>520</td>
<td>Nekovové vměstky</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td></td>
<td>522</td>
</tr>
<tr>
<td></td>
<td></td>
<td>523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>526</td>
</tr>
<tr>
<td>530</td>
<td>Makrosegregace a vycezeniny</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td></td>
<td>532</td>
</tr>
<tr>
<td></td>
<td></td>
<td>533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>534</td>
</tr>
<tr>
<td>540</td>
<td>Broky</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>Kovové vměstky</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>Nevyhovující lom</td>
<td></td>
</tr>
</tbody>
</table>

Tab. II pokračování 2

<table>
<thead>
<tr>
<th>Třída vad</th>
<th>Skupina vad</th>
<th>Druh vad</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Vady mikrostruktury</td>
<td>610 Mikroskopické dutiny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>612 Mikrobubliny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>613 Mikrotrhliny</td>
</tr>
<tr>
<td>600</td>
<td>Vady mikrostruktury</td>
<td>620 Vměstky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>630 Nesprávná velikost zrna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640 Nesprávný obsah strukturních složek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>650 Zatvrzlina, zákalka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>660 Obrácená zákalka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>670 Oduhličení povrchu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>680 Jiné odchylky od mikrostruktury</td>
</tr>
<tr>
<td>700</td>
<td>Vady chem. složení a vlastností odlitků</td>
<td>710 Nesprávné chemické složení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>720 Odchylky hodnot mechanických vlastností</td>
</tr>
<tr>
<td></td>
<td></td>
<td>730 Odchylky hodnot fyzikálních vlastností</td>
</tr>
<tr>
<td></td>
<td></td>
<td>740 Nevyhovující homogenita odlitku</td>
</tr>
</tbody>
</table>

1.3 Kvalita produktů ve slévárnách

Charakter slévárenskej výroby předurčuje vztah sléváren ke kvalitě, tak jak naznačují následující body.

- Slévárensksý průmysl má jen v malé míře finální výrobky, jen málo sléváren prodává své produkty podle katalogu. Je to typický subdodavatelský obor. Obchodník musí být více než v jiných oborech „zbožíznalec“. Marketing musí dělat celá firma.

- Existuje proto úzká vazba na zákazníka a od něj je také rychlá zpětná vazba.

- Zboží se vyrábí podle dokumentace zákazníka - „šije se na míru“. Dnes je trend vstupovat i do vývoje výrobku a podílet se na dokumentaci a vlastnostech zboží – odlitků.

- Zavedení systému managementu kvality podle mezinárodních standardů ISO 9000, stejně jako jeho pravidelná certifikace je dnes samozřejmostí.
Zákazník se často spoléhá na vlastní audity a sleduje systém jakosti. Začíná se systémovými audity, následuje výrobkový audit (schválení vzorků), pokračuje se procesními audity.

Zákazníci táhnou firmu k neustálému zlepšování, sledují plány jakosti, plány snížování nákladů.

Slévárny dnes vstupují v rámci simultánního inženýrství i do vývojových etap nových produktů. To dokážou jen firmy s vysoko kvalifikovaným personálem, disponující výpočetní technikou s programy podporujícími konstruování 3D, konstrukčními výpočty a matematickým modelováním slévárenských pochodů, pomocí simulačních programů, tzv. virtuálním odléváním. Samozřejmě musí disponovat moderními výrobními technologiemi a pokročilými zkušebními a diagnostickými zařízeními.

1.4 Literatura

Σ

Shrnutí pojmů kapitoly

– Je uvedeno v části „Členění kapitoly“

❓ Otázky k probranému učivu

– Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
2 MEZINÁRODNÍ NORMY ŘÍZENÍ KVALITY

Členění kapitoly
- Struktura základních norem managementu kvality
- Základní principy a požadavky normy ČSN EN ISO 9001:2009 - Systémy managementu kvality – Požadavky
- Závěr
- Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět
- Definovat strukturu dokumentování systému managementu kvality v organizaci
- Definovat zásady pro efektivní systém managementu kvality.
- Vysvětlit pojmy identifikovatelnosti a sledovatelnosti a jejich význam v systému managementu kvality

Výklad

K tomu, aby organizace a firmy byly schopny odolávat konkurenci na trhu a udržely si dobrou ekonomickou výkonnost, musí využívat účinné a efektivní systémy zabezpečování kvality. Tyto systémy vedou k neustálému zlepšování kvality a rostoucímu uspokojování zákazníků, majitelů, zaměstnanců, veřejnosti atd. Nenadál [1] charakterizoval význam efektivního managementu kvality do následujících bodů:
- Kvalita je rozhodujícím faktorem stabilní ekonomické výkonnosti podniků.
- Management kvality je nejdůležitějším ochranným faktorem před ztrátami trhů.
- Kvalita je velmi významný zdroj úspor materiálů a energií.
- Kvalita ovlivňuje i makroekonomické ukazatele.
- Kvalita je limitujícím faktorem tzv. trvale udržitelného rozvoje.
- Kvalita a ochrana spotřebitele jsou spojitě nádoby.
Mohli bychom samozřejmě uvádět i některé další argumenty, ale omezme se pouze na konstatování, že v současné světě, kde u naprosté většiny výrobků a služeb existuje převaha nabídky produktů nad poptávkou, kde se neustále zkracují inovační cykly mnohých produktů a kde tzv. globalizace ekonomiky je neúprosnou realitou, má a nesporně bude mít i nadále svou důležitou roli i to, co je nazýváno managementem kvality [1].

Požadavky zákazníků se kromě zákonných předpisů a norem velmi často zpracovávají do tzv. technických přejímacích podmínek a dalších specifikací zákazníka. Tyto předpisy však samy o sobě nezaručují soustavné plnění požadavků zákazníka, vyskytnou-li se nedostatky v organizačním systému dodávání a podpory výrobku. Tato skutečnost vedla k vypracování norem a směrnic, které doplňují příslušné požadavky na produkt či službu. Tak vznikly mezinárodní normy ISO, které popisují činnosti, které mají systémy kvality obsahovat. ISO (Mezinárodní organizace pro normalizaci) je celosvětovou federací národních normalizačních orgánů (členů ISO). Česká republika přijala tuto mezinárodní normu jako normu národní (ČSN) a zároveň vydařila jako EN. Její závaznost tedy vyplývá z tohoto aktu. Organizace a firmy upravují své systémy řízení a zavádějí systém managementu kvality předepsaný normou ČSN EN ISO 9001[2] a následně je předkládají k certifikaci pro nezávislé posouzení schopnosti organizace plnit požadavky této normy. Hlavní přínosy certifikace systému managementu kvality podle ČSN EN ISO 9001 lze shrnout do následujících bodů:

- zkvalitnění systému řízení, zdokonalení organizační struktury organizace;
- zlepšení pořádku a zvýšení efektivnosti v celé organizaci;
- poskytování služeb i nejnáročnějším zákazníkům a možnost získání nových zákazníků s ohledem na zvyšování jejich spokojenosti;
- garance stálosti výrobního procesu a tím i stabilní a vysoké kvality poskytovaných služeb a produktů zákazníkům;
- efektivně nastavenými procesy navýšovat tržby, zisk, tržní podíl a tím zvyšovat spokojenost vlastníků, majitelů;
- optimalizace nákladů - redukce provozních nákladů, snížení nákladů na neshodné výrobky, úspora surovin, energie a dalších zdrojů;
- zvýšení důvěry veřejnosti i státních kontrolních orgánů.

2.1 Struktura základních norem managementu kvality

V normě ČSN EN ISO 9001 jsou specifikovány požadavky na systém managementu kvality, který mohou organizace používat pro interní aplikaci, certifikaci nebo pro smluvní účely s dodavateli a zákazníky. Využívá se při certifikaci pro nezávislé posouzení schopnosti organizace plnit požadavky normy ČSN EN ISO 9001; pro posouzení zákazníků, plnění požadavků předpisů, vlastních požadavků stanovených pro efektivní fungování všech procesů a neustálého zlepšování systému managementu kvality.
ČSN EN ISO 9004:2010 - Řízení udržitelného úspěchu organizace - Přístup managementu kvality

ČSN EN ISO 9000:2006 - Systémy managementu kvality – Základní principy a slovník

V normě ČSN EN ISO 9000 jsou uvedeny základy a zásady systému managementu kvality a terminologie systému managementu kvality. Využívá se k vysvětlení používaných termínů v systému managementu kvality a jejích vzájemných vazeb.

2.2 Základní principy a požadavky normy ČSN EN ISO 9001:2009 - Systémy managementu kvality – Požadavky

Zavedení systému managementu kvality je strategickým rozhodnutím organizace. Většina sléváren má implementován a certifikován systém managementu kvality podle této normy a kladně hodnotí jeho přínos pro řízení kvality odlitků [3,4], diagnostiku a prevenci vad odlitků. Záměrem této mezinárodní normy není stanovovat jednotnou strukturu systémů managementu kvality ani jednotnou dokumentaci. Normu mohou používat interní a externí strany, včetně certifikačních orgánů při posuzování schopnosti organizace plnit požadavky zákazníka, požadavky zákonů a předpisů aplikovatelné na produkt a vlastní požadavky organizace.

- Plánování kvality je část managementu kvality zaměřená na stanovení cílů kvality a specifikování procesů nezbytných pro provoz a souvisejících zdrojů pro splnění cílů kvality.
- Řízení kvality je část managementu kvality zaměřená na plnění požadavků na kvalitu.
- Prověřování kvality je část managementu kvality zaměřená na poskytování důvěry, že požadavky na kvalitu budou splněny.
- Zlepšování kvality je část zaměřená na zvyšování schopnosti plnit požadavky na kvalitu [5].

Citovaná mezinárodní norma podporuje používání procesního přístupu při vytváření, implementaci a zvyšování efektivnosti systému managementu kvality s cílem zvýšit spokojenost zákazníka prostřednictvím plnění jeho požadavků. Výhodou procesního přístupu je to, že umožňuje neustálé řízení propojení jednotlivých procesů v jejich systému, stejně jako řízení jejich vzájemných vazeb. Podle Nenadála [1] lze procesní přístup stručně charakterizovat jako systematickou identifikaci a management procesů používaných v organizaci a zejména jejích vzájemná vazba.
Organizace musí v souladu s požadavky této mezinárodní normy vytvořit, dokumentovat, implementovat a udržovat systém managementu kvality a neustále zlepšovat jeho efektivnost. Dokumentace systému managementu kvality musí zahrnovat:

a) dokumentovaná prohlášení o politice kvality a cílech kvality,
b) příručku kvality,
c) dokumentované postupy a záznamy požadované touto mezinárodní normou a dokumenty, včetně záznamů, které organizace potřebuje pro zajištění efektivního plánování, fungování a řízení svých procesů.

Vrcholové vedení musí zajistit, aby byly pro příslušné organizační jednotky a úrovně v organizaci stanoveny cíle kvality, včetně cílů potřebných pro plnění požadavků na produkt. Cíle kvality musí být měřitelné a musí být v souladu s politikou kvality.

Důležitou kapitolou normy je Monitorování a měření (8.2).

Monitoruje se především spokojenost zákazníků. Organizace musí sbírat informace od zákazníků, zda byly splněny jejich požadavky. K tomu musí vyt stanoven způsob získávání a využívání těchto informací.

Další formou monitorování jsou interní audity. Organizace je má provádět v plánovaných intervalech tak, aby se stanovilo, zda systém managementu kvality vyhovuje požadavkům této normy a požadavkům vlastního systému managementu kvality a je efektivně implementován a je udržován.

Monitorování a měření produktu musí organizace provádět proto, aby si ověřila, jak jsou plněny charakteristiky produktu. Toto musí být prováděno v příslušných etapách procesu realizace produktu v souladu s plánovaným uspořádáním činností. Musí být udržovány důkazy o shodě s přejímacími podmínkami.

Do téže kapitoly patří Řízení neshodného produktu, známé ve šľávárnách pod názvem „zmetkové řízení“.

Organizace musí zajišťovat, že produkt, který není ve shodě s požadavky na produkt, je identifikován a je řízen tak, aby se zabránilo jeho nezamýšlenému použití nebo dodání. Prvky
řízení a související odpovědnosti a pravomoci pro zacházení s neshodným produktem musí být stanoveny v dokumentovaném postupu.

Organizace musí nakládat s neshodným produktem jedním nebo několika z těchto způsobů:

a) přijetím opatření k odstranění zjištěné neshody;
b) schválením jeho používání, uvolnění nebo přijetí s výjimkou udělenou příslušným orgánem a je-li to proveditelné, zákazníkem;
c) přijetím opatření k zamezení jeho původně zamýšlenému použití nebo aplikaci;
d) přijetím opatření, které je vhodné vzhledem k důsledkům, nebo potenciálním důsledkům neshodného produktu v případě, že je neshoda produktu zjištěna následně po tom, co započalo jeho dodávání nebo používání.
e) Je-li neshodný produkt opraven, musí být podroben opakovanému ověřování tak, aby se prokázala shoda s požadavky.

Musí být vytvářeny a udržovány záznamy o povaze neshod a o všech provedených nápravných opatřeních, včetně udělených výjmek.

Organizace musí určovat, shromažďovat a analyzovat data k tomu, aby se prokázala vhodnost a efektivnost systému managementu kvality a aby se vyhodnotilo uskutečnění jeho neustálého zvýšování. Toto musí zahrnovat data získávaná jako výsledek monitorování a měření a data z jiných relevantních zdrojů.

Tyto požadavky souvisí s pojmy identifikace a sledovatelnosti v systémech managementu kvality.

Identifikaci lze chápat jako realizaci identifikovatelnosti produktu, což je vlastnost produktu, která umožňuje jeho okamžité a jednoznačné rozpoznání ve výrobním či jiném procesu. Umožní spojení informace o materiálech, subdodávkách výrobků a jejich fyzických objekty. Identifikace vzniku neshod je jedním z zdrojů informací o procesu a je základnou pro formulování opatření k nápravě či definování opatření preventivních.

Sledovatelnost je schopnost zpětně určit na základě identifikace, kdy, kde, z čeho, kým, a jak jsem obdržel produkt zhotoven. Zajištění zpětného sledování produktu v celém procesu představuje významný prostředek cílevědomé péče o jakost.

Organizace musí provádět opatření pro odstranění příčin neshod tak, aby nedocházelo k jejich opětovnému výskytu. Nápravná opatření musí být přiměřená vůči důsledkům zjištěných neshod.

Musí být vytvořen dokumentovaný postup, kterým se stanoví požadavky na:

a) přezkoumávání neshod (včetně stížností zákazníka),
b) určování příčin neshod,
c) vyhodnocování potřeb opatření, kterými se zajistí, že se neshody znovu nevyskytnou,
d) určování a implementaci potřebných opatření,
e) záznamy výsledků provedených opatření a
f) přezkoumávání efektivnosti provedených nápravných opatření.

Preventivní opatření

Organizace musí určit opatření k odstranění příčin potenciálních neshod tak, aby se zabránilo jejich výskytu. Preventivní opatření musí být přiměřená důsledkům potenciálních problémů. Musí být vytvořen dokumentovaný postup pro stanovení požadavků na:

- a) určování potenciálních neshod a jejich příčin,
- b) vyhodnocování potřeb opatření k zabránění výskytu neshod,
- c) určování a implementaci potřebných opatření,
- d) záznamy výsledků provedených opatření a přezkoumávání efektivnosti provedených preventivních opatření.

2.3 Závěr

Závěrem můžeme shrnout zásady pro efektivní systémy managementu kvality, které pomáhají při zlepšování kvality produktů ve slévárnách usilujících o výrobu odlitků bez vad. Jsou to:

- ✓ Zaměření na zákazníka.
- ✓ Vedení, management.
- ✓ Zapojení zaměstnanců.
- ✓ Procesní přístup.
- ✓ Systémový přístup k řízení.
- ✓ Neustálé zlepšování.
- ✓ Rozhodování na základě faktů.
- ✓ Přínos ze zavedení efektivního systému managementu není jen záležitostí kvality produktů, ale jak uvádí tab. 1 další zainteresované strany.
Tab. 1 Přínosy zavedení systému kvality pro zainteresované strany [1]

<table>
<thead>
<tr>
<th>Zainteresovaná strana</th>
<th>Očekávané přínosy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zákazníci</td>
<td>– zlepšená včasnost dodávek,</td>
</tr>
<tr>
<td></td>
<td>– zvýšená důvěra v dodavatele,</td>
</tr>
<tr>
<td></td>
<td>– snížení nákladů na životní cyklus,</td>
</tr>
<tr>
<td></td>
<td>– snížení objemu stížností a reklamací apod.</td>
</tr>
<tr>
<td>Vlastníci/vrcholové vedení organizace</td>
<td>– vyšší spokojenost s dosahovanou výkonností organizace,</td>
</tr>
<tr>
<td></td>
<td>– lepší perspektivy na trzích,</td>
</tr>
<tr>
<td></td>
<td>– jasně vymezení pravomocí a odpovědnosti,</td>
</tr>
<tr>
<td></td>
<td>– vyšší transparentnost systému managementu, apod.</td>
</tr>
<tr>
<td>Zaměstnanci</td>
<td>– zlepšené pracovní prostředí,</td>
</tr>
<tr>
<td></td>
<td>– jasně vymezení odpovědnosti a pravomoci,</td>
</tr>
<tr>
<td></td>
<td>– vyšší sociální jistoty a rozsáhlé sociální programy,</td>
</tr>
<tr>
<td></td>
<td>– zlepšená úroveň interní komunikace,</td>
</tr>
<tr>
<td></td>
<td>– zlepšení v procesech řízení lidských zdrojů apod.</td>
</tr>
<tr>
<td>Dodavatelé</td>
<td>– zlepšená komunikace o požadavcích odběratelů,</td>
</tr>
<tr>
<td></td>
<td>– dlouhodobé partnerské vztahy s odběrateli,</td>
</tr>
<tr>
<td></td>
<td>– sdílení nejlepší praxe v oblasti managementu jakosti apod.</td>
</tr>
<tr>
<td>Společnost</td>
<td>– zlepšená výkonnost organizací (tj. vyšší objem odvedených daní),</td>
</tr>
<tr>
<td></td>
<td>– snížování nezaměstnaností,</td>
</tr>
<tr>
<td></td>
<td>– respektování legislativních požadavků,</td>
</tr>
<tr>
<td></td>
<td>– snazší orientace při výběrových řízeních apod.</td>
</tr>
</tbody>
</table>

2.4 Literatura

Shrnutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
3 NÁSTROJE PLÁNOVÁNÍ A ZLEPŠOVÁNÍ KVALITY

Členění kapitoly
✓ Diagram příčin a následků
✓ Kontrolní tabulka
✓ Histogram
✓ Paretův diagram
✓ Korelační diagram
✓ Vývojový diagram
✓ Regulační diagram
✓ Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

• Aplikovat diagram příčin a následků při řešení vad odlitků
• Aplikovat Paretův diagram pro řešení kvality odlitků
• Sestavovat a využívat regulační diagramy při řízení procesů výroby odlitků

Výklad

V předchozí kapitole bylo konstatováno, že v požadavcích standardů jakosti je kladen velký důraz na plánování a zlepšování procesů a produktů. Postupy neustálého zlepšování kvality se opírají o různé nástroje kvality. Ty představují určité kvantitativní postupy, které dovolují lépe sledovat procesy a řídit realizaci produktů, lepší identifikaci, diagnostiku a řešení různých problémů. Pro řízení sériové, linkové výroby se uplatnilo sedm základních nástrojů zlepšování kvality [1.2]. Zrody se v Japonsku a v angličtině jsou známy jako Seven Basic Tools of Quality. Pomocí nich lze sledovat zmetkovitost způsobenou lidsmi, technologií i stroji. Jsou vhodné i pro výrobu kusovou nebo malých dávek. Hodí se proto i pro slévárenskou výrobu. Jedná se o nástroje jednoduché a dává se jim přednost před exaktními statistickými metodami, z nichž některých si všimneme v příští kapitole. Je to totiž soubor
grafických metod, který pomáhá řešit i velmi složité problémy. Metody se uvádí v tomto pořadí:

1. Diagram příčin a následků, známý též jako Ishikawův diagram nebo diagram rybí kost (Fishbone Chart).
2. Kontrolní tabulka, nebo také záznamník dat, třídění informací.
3. Histogram rozdělení četnosti.
4. Paretova analýza (diagram – Pareto Chart).
5. Korelační diagram nebo regresní a korelační analýza.
6. Vývojový diagram (Flow Chart).
7. Regulační diagram (Control Chart).

3.1 Diagram příčin a následků

Řeší úlohu pravděpodobné příčiny problémů. Provádí se při skupinovém setkání a účastníci využívají metodu brainstormingu, při kterém jsou hledány všechny příčiny problému. Při sestavování diagramu tvoří problém (např. vada odlitku) tzv. hlavu rybí kosti a hlavní kosti vedoucí od páteře znamenají oblasti či kategorie, ve kterých se může problém nacházet. Vedlejší kosti pak reprezentují konkrétní činitele – příčiny vady. Takto lze diagram tvořit ve více úrovních příčin a podpříčin. Ishikawův diagram se používá především na řešení situací, kdy skupina má „provozní slepotu“. K sestrojení diagramu je doporučován následující postup:

1. Shodnout se na pojmenování problému, který tvoří „hlavu“ rybí kostry a nakreslit vodorovnou šipku k ní směřující,
2. Provést brainstorming hlavních příčin problému (jevu). Pokud je to obtížné, je možné použít obecné příčiny z daného odvětví, nabízí se tzv. prázdný diagram obsahující:

<table>
<thead>
<tr>
<th>Postupy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pracovníci, lidé</td>
</tr>
<tr>
<td>Vedení</td>
</tr>
<tr>
<td>Materiál</td>
</tr>
<tr>
<td>Kontrola a zkoušení</td>
</tr>
<tr>
<td>Prostředí</td>
</tr>
</tbody>
</table>

3. Napsat jednotlivé příčiny (činitele) jako větve z hlavní šipky.
4. Provést brainstorming ohledně detailů příčin a použít otázku „PROČ se to stalo?“ Zakreslit každou detailní příčinu jako odbočující šipku dané kategorie. Příčiny mohou být psány na několika místech, pokud se týkají více kategorií.
5. Ke každému detailu znovu použít otázku „PROČ se to stalo?“ a napsat další příčinu. Když skupině dojdou nápady, je třeba se zaměřit na místa v grafu, kde je méně zaznamenaných příčin.

Podívejme se na dva příklady využití Ishikawa diagramu. První bude pro jev výroby jader a druhý pro nežádoucí jev vzniku vady odlitků bodliny (420). Obr. 1 velmi detailně rozebírá činitelé, kteří působí na proces výroby pískových jader, která významně určují kvalitu odlitků.

Diagram příčin a následků pro technologický proces výroby pískových jader

Obr. 1 Diagram příčin a následků pro technologický proces výroby pískových jader
4) Konstrukce odlitku (tloušťky stěn a tvar, požadavky na vlastnosti materiálu odlitku mechanické vlastnosti materiálu aj.).
5) Okolní prostředí (teplota, tlak a další geo-klimatické podmínky).

Obr. 2 Diagram příčin a následků pro vznik bodlin u odlitků z litiny s kuličkovým grafitem

3.2 Kontrolní tabulka

Kontrolní tabulka (viz příklad) nebo formulář slouží ke sběru a zaznamenání prvotních kvantitativních údajů o kvalitě, např. počet a druh vad během výrobního procesu nebo při výstupní kontrole. Cílem je získat celkový přehled o stavu kvality a dáte odpovědným osobám možnost rozhodovat se na základě faktů. Při návrhu formuláře, sběru a zaznamenání dat je třeba zvážit tato hlediska.

- Princip vrstvení (stratifikace) – proces třídění dat, jehož cílem je oddělení dat z různých zdrojů tak, aby bylo možno rychle identifikovat původ každé položky a tím i původ případného souvisejícího problému.
- Principy jednoduchosti, standardizace a vizuální interpretace – je kladen důraz na jednoduchost zápisu dat, aby ho mohl provést každý. Záznam má být proveden jednoduše za použití značek (čárek) namísto číselných údajů. Data by měla být zapsána v takové formě, aby se již při dalším zpracování nemusela přepisovat do dalších formulářů.
Příklad kontrolní tabulky pro řešení vad odlitků na různých směnách a v různých kalendářních dnech

<table>
<thead>
<tr>
<th>KOKILA ČÍSLO</th>
<th>DEN</th>
<th>POČET NESHODNÝCH VÝROBKŮ (ks)</th>
<th>Směna A</th>
<th>Σ</th>
<th>Směna B</th>
<th>Σ</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Po</td>
<td>xxxxxxxxx</td>
<td>8</td>
<td>xxx</td>
<td>3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Út</td>
<td>xxx</td>
<td>4</td>
<td>x</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St</td>
<td>xxxx</td>
<td>4</td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Čt</td>
<td>xxx</td>
<td>3</td>
<td>xx</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pá</td>
<td>xxxxxx</td>
<td>5</td>
<td></td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Po</td>
<td>xxxxxxx</td>
<td>6</td>
<td>xx</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Út</td>
<td>xxxxxxxxxx</td>
<td>7</td>
<td>xxx</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St</td>
<td>xxxxxx</td>
<td>5</td>
<td>x</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Čt</td>
<td>xxxxxxxxxx</td>
<td>6</td>
<td>xx</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pá</td>
<td>xxxxx</td>
<td>5</td>
<td>x</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Po</td>
<td>xxxxxxx</td>
<td>6</td>
<td>xx</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Út</td>
<td>xxx</td>
<td>3</td>
<td></td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St</td>
<td>xx</td>
<td>2</td>
<td>x</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Čt</td>
<td>xxxx</td>
<td>4</td>
<td>x</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pá</td>
<td>xxx</td>
<td>3</td>
<td>x</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Σ3</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>5</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td></td>
<td>71</td>
<td></td>
<td>20</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

VYHODNOTIL:

3.3 Histogram

Obr. 3 Příklad využití histogramu pro porovnání osádek mísiců formovacích směsí na 1. a 2. směně

3.4 Paretův diagram

Paretův diagram je typ grafu, který je kombinací sloupcového a čárového grafu, kde sloupce znázorňující četnost pro jednotlivé kategorie jsou seřazeny podle velikosti (nejvyšší sloupec vlevo, nejnižší vpravo) a linie představuje kumulativní četnost v procentech. Paretův diagram se používá ke znázornění důležitosti jednotlivých kategorií. Je vhodný při analýze četnosti neshod daného procesu, které mohou mít více příčin, a je třeba určit nejvýznamnější příčiny. Proto se s ním můžeme často setkat ve slévárnách při hodnocení zmetkovitosti odlitků. Při konstrukci Paretova grafu je nutné určit kategorie, které se budou zobrazovat, jaké veličiny se budou měřit a jaký časový úsek se bude měření týkat. Hodí se také pro analýzu ztrát, reklamací, příčiny neshod. Můžeme podle něj pro určitý problém určit „neužitečnou menšinu“ příčin a „užitečnou většinu“, která je nad hranicí 80 %. Uveďme si příklad rozboru neshodných výrobků ve slévárně šedé litiny za jedno čtvrtletí

Obr. 4 Příklad množství (%) neshodných výrobků ve slévárně šedé litiny za jedno čtvrtletí
3.5 Korelační diagram

Korelační diagram nebo také bodový graf je matematické schéma užívající kartézských souřadnic pro zobrazení souboru dat o 2 proměnných. Data jsou zobrazena jako jednotlivé body, kde horizontální osu určuje hodnota nezávisle proměnné a vertikální osu hodnota závisle proměnné. Takto je možné jednoduše zjistit vzájemný vztah (korelací) mezi oběma proměnnými, případně tuto závislost interpolovat (přímou, křivkou, nebo jiným typem závislosti), tak jak je naznačeno na obr. 5.

Obr. 5 – Příklady bodových grafů s různým průběhem závislosti.

Obr. 6 Závislost aktivity kyslíku na převrácené hodnotě teploty během tuhnutí litiny
3.6 Vývojový diagram

Vývojový diagram je grafické znázornění algoritmů nebo procesů a slouží k lepšímu pochopení procesů a jejich vztahů. Vývojový diagram používá pro znázornění jednotlivých dílčích operací symboly – Tab. I, které jsou navzájem propojeny pomocí orientovaných šipek. Používané symboly obsahuje a definuje česká norma ČSN ISO 5807. Ve vývojovém diagramu můžeme sledovat logický postup činností tak, jak jdou za sebou, větví se do paralelních cest, opět se spojují, případně se opakují, dokud není ve všech variantách spojen začátek a konec, tedy vstup a výstup.

Tab. I Symboly používané při tvorbě vývojových diagramů a jejich význam

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spojka, přechod na jinou část nebo pokračování vývojového diagramu</td>
</tr>
<tr>
<td></td>
<td>Výkon operace, činnost</td>
</tr>
<tr>
<td></td>
<td>Rozhodovací proces vždy jeden vstup a jen dva výstupy</td>
</tr>
<tr>
<td></td>
<td>Subproces popsaný v jiném subdiagramu</td>
</tr>
<tr>
<td></td>
<td>začátek nebo konec procesu</td>
</tr>
<tr>
<td></td>
<td>Dokument</td>
</tr>
</tbody>
</table>

Právě takový příklad uvádí následující tabulka postupu identifikace vad odlitků, kterou se budeme zabývat v 6. kapitole.
Nástroje plánování a zlepšování kvality.

Tab. II Vývojový diagram identifikace vad odlitků [5]

<table>
<thead>
<tr>
<th>Schéma</th>
<th>postup členůvá</th>
<th>provádí</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>posouzení vady podle vzhledu, norem, výkresů a sjednaných technických podmínek</td>
<td>kontrolor</td>
</tr>
<tr>
<td></td>
<td>posouzení, zda se jedná o vadu zjevnou (ANO), nebo skrytou neshodu (NE)</td>
<td>kontrolor</td>
</tr>
<tr>
<td></td>
<td>posouzení, zda lze vadu jednoznačně určit</td>
<td>kontrolor</td>
</tr>
<tr>
<td></td>
<td>určení druhu vady (neshody), stanovení příčin, nápravná opatření</td>
<td>kontrolor nebo komise odborníků</td>
</tr>
<tr>
<td></td>
<td>posouzení možnosti opravy vady (neshody) – lze, možno opravit?</td>
<td>kontrolor, technolog, mistr</td>
</tr>
<tr>
<td></td>
<td>provedení opravy, úpravy</td>
<td>určená dílna</td>
</tr>
<tr>
<td></td>
<td>provedení záznamu o použitých postupech, rozsahu, identifikace</td>
<td>mistr</td>
</tr>
<tr>
<td></td>
<td>uvolnění odlitku zákazníkovi</td>
<td>kontrolor, expedient</td>
</tr>
<tr>
<td></td>
<td>vyřazení odlitku, šrotace</td>
<td>kontrolor, mistr</td>
</tr>
<tr>
<td></td>
<td>provedení doplňkových rozborů, destruktivní i nedestruktivní kontroly atd.</td>
<td>laboratoř, určená dílna</td>
</tr>
<tr>
<td></td>
<td>posouzení výsledků rozborů, vzhledu vady, shody s předpisy</td>
<td>kontrolor nebo komise odborníků</td>
</tr>
<tr>
<td></td>
<td>lze vadu nyní jednoznačně určit?</td>
<td>kontrolor nebo komise odborníků</td>
</tr>
<tr>
<td></td>
<td>opakování celého postupu s využitím dalších kontrolních metod, externích odborníků apod. až do konečného rozhodnutí</td>
<td></td>
</tr>
</tbody>
</table>
Tab. II Vývojový diagram určení příčin vady [5]
3.7 Regulační diagram

Regulační diagramy tak mohou být použity např. při kontrole stability procesu, tedy mohou zjistit, zda proces funguje jako stabilní systém s náhodnými vlivy působícími v malém rozsahu (systém s inherentní variabilitou) označovaný těž jako proces ve statisticky zvládnutém stavu „, případně zda dochází ke zlepšení při zhoršení tohoto stavu. Dále pak mohou být použity ke sledování trendů, iterací a cyklů chování systému a tak určovat předikovatelnost systému a předpovídat, zda systém výhoví stanoveným požadavkům. Také se používají k identifikaci a případné eliminaci nepříznivých vlivů, poskytnout zpětné vazby pro nastavení procesu a při posuzování výkonnosti systému měření. Regulační diagram poskytuje uživatelům on-line pohled na chování procesu a jeho výhodou je jednoduchost konstrukce a snadnost užití. Regulační diagram je také vhodné použít pro ovládání protichájících procesů a opravu chyb tzv. „za běhu“.

Pro regulační diagramy platí další rozhodná kritéria pro určení stability procesu, resp. nutnosti zásahu do procesu. Jsou to tzv. tresty nenáhodných uskupení, tedy zvláštních uskupení bodů. Takovým uskupením může být:

- Jeden nebo více bodů leží mimo akční meze.
- Určitý počet bodů v řadě za sebou leží mimo výstražné meze.
- Určitý počet bodů v řadě za sebou leží na jedné straně od střední hodnoty.
- Určitý počet bodů v řadě za sebou leží na jedné straně od střední hodnoty a vykazuje více než jedno překročení výstražných mezi,
Nástroje plánování a zlepšování kvality.

- Určitý počet bodů v řadě za sebou bez přerušení roste, případně klesá.
- Vyšší počet bodů v řadě za sebou nevykazuje žádná narušení mezí.
- Vyšší počet bodů v řadě za sebou střídavě klesá a roste.
- Určitý počet bodů v řadě za sebou překračuje výstražné mez.
- Implementace počtu bodů se může lišit případ od případu. Příkladem mohou být tzv. Nelsonova pravidla

3.8 Literatura

Σ Shrunutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

❓ Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
Členění kapitoly

✓ Cyklus PDCA
✓ Deník kvality (Quality journal)
✓ Analýza způsobů a důsledků poruch FMEA
✓ Analýza způsobilosti procesů
✓ Plánování experimentu
✓ Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

- Aplikovat cyklus PDCA
- Vyhodnotit způsobilost procesu z regulačních diagramů
- Aplikovat metodu Plánování experimentu

Výklad

Musíme si však uvědomit, že metody a nástroje vyhodnocování, řízení a zlepšování kvality kvalitu nezlepší. Ať je to sedm základních nástrojů zlepšování kvality probíraných v kapitole 3 nebo sedm nových nástrojů [3]. **KVALITA SE ZLEPŠÍ JENOM TEHDY, KDYŽ SE ZAMĚŘÍ CELÁ KULTURA ORGANIZACE NA ZMĚNU A UČINÍ-LI Z KVALITY SVOU PRIORITU.**
V této kapitole probereme pokročilejší nástroje plánování a zlepšování kvality založené na využití statistických metod, které jsou aktivně využívány ve slévárnách. Jsou to:

- Cyklus PDCA.
- Deník kvality (Quality Journal).
- Metoda FMEA.
- Analýza způsobilosti procesu.
- Plánování experimentu.

4.1 Cyklus PDCA

Základním nástrojem zlepšování kvality je Demingův cyklus PDCA. Tento cyklus bychom měli při řešení každého problému využívat a stále se k němu vracet. Je to jeden ze základních principů managementu kvality známý jako „Total Quality Management“ TQM. Koncepce TQM vznikla v druhé polovině 20. století a je otevřenou filozofií managementu organizací. Cyklus PDCA bývá znázorněn kruhovým diagramem, ve kterém jednotlivá písmena (z anglického originálu) značí:

- P (Plan) – Plánování opatření, zlepšení.
- D (Do) – Realizace plánovaných opatření, aktivit.
- C (Check) – Kontrola a realizace dosažených výsledků, které porovnáváme s plánem.
- A (Act) – Udržování toho, co se realizovalo.

Využití tohoto nástroje neustálého zlepšování jako přechod k TQM vyjadřuje zjednodušeně, nicméně názorně obr. 1, ve kterém je vidět posun kruhu PDCA k vyšší úrovni managementu kvality.

Obr. 1 Proces neustálého zlepšování
4.2 Deník kvality (Quality journal)

Tato metoda představuje vyšší stupeň zlepšování kvality a vznikla rozpracováním metody PDCA. Jedná se o systematický přístup ke zlepšování kvality, který probíhá v sedmi krocích. Jeho struktura se velice přibližuje postupu diagnostiky vad odlitků, prevencí vad a zlepšování kvality odlitků. Příklad rozpracování této metody na vady odlitků bude uveden v kapitole 13 při rozboru možností výroby odlitků bez vad. To je ten správný nástroj k dosažení takového cíle.

1) Identifikace problému – je třeba začít identifikováním nejdůležitějšího problému. Popsat stávající stav jeho výskytu, stanovit cílový stav a časový harmonogram řešení.

2) Sledování problému – zkoumá se vlastnosti problému a okolnosti jeho vzniku. Důležitou součástí je sledování času a místa výskytu problému, jeho typu a příznaků.

3) Analýza příčin problému – může se využít diagram příčin a následků a hledají se všechny možné příčiny problému. Důležité je analyzovat míru vlivu jednotlivých příčin. K tomu se využívají statistické metody jako je metoda FMEA, regresní a korelační analýza, plánování experimentu, testování hypotéz aj.

4) Návrh a realizace opatření k odstranění příčin. V tomto kroku se navrhuje vhodná opatření k odstranění identifikovaných příčin problému. U jednotlivých návrhů je žádoucí prozkoumat jejich výhody a nevýhody. Zejména je důležité se zabývat otázkou, zda realizace navrženého opatření nebude doprovázena nežádoucími průvodními jevy, které by mohly vyvolat nový problém.

5) Kontrola účinnosti opatření – po realizaci přijatých opatření je nezbytné vyhodnotit jejich účinnost.

6) Trvalá eliminace příčin – v případě, že realizace opatření vedla ke zlepšení, je potřeba zajistit trvalé zakotvení provedených změn v technologické dokumentaci a výcvik pracovníků.

7) Zpráva o řešení problému a plánování budoucích aktivit – v posledním kroku se zpracovává zpráva o průběhu řešení problému doložená konkrétními daty a rozory.

V běžné praxi, ve snaze celý proces zlepšování urychlit, často dochází k přeskakování nebo zkracování některých kroků. Výsledek pak bývá zcela opačný, neboť dosažení úspěšného řešení se naopak oddává. Častým problémem je, že není odhalena skutečná příčina. K tomu navržené opatření není dostatečně účinné a jeho realizace je doprovázena vznikem nových problémů, Malá pozornost se rovněž věnuje komplexnímu vyhodnocení účinnosti realizovaných opatření. Příklady takto nesprávně řešených problémů s vadami odlitků najdeme ve slévárnách desítky.

4.3 Analýza způsobů a důsledků poruch FMEA

FMEA je preventivní metoda týmové práce, při které tým odborníků využívá svých předchozích zkušeností, aby se v budoucnu vyvaroval chyb (neshod). Zkratka FMEA představuje početně písmena z anglického názvu metody Failure Mode and Effect Analysis. V praxi rozlišujeme 2 druhy FMEA:

- FMEA konstrukce.
- FMEA technologie

Tab. I Příklad databanky vad (neshod)

<table>
<thead>
<tr>
<th>bubliny</th>
<th>nedodržení tloušťky stěny</th>
</tr>
</thead>
<tbody>
<tr>
<td>vycizenině</td>
<td>zákalka</td>
</tr>
<tr>
<td>dřsný povrch</td>
<td>nesprávné chemické složení</td>
</tr>
<tr>
<td>praskliny</td>
<td>a další</td>
</tr>
</tbody>
</table>

Analýza FMEA je záležitostí týmové práce. Tým zpravidla svolává pracovník odpovědný za návrh, řidi jej moderátor. Vhodné složení týmu pro MEA technologie: Předkladatel návrhu technologie, profesní spolupracovník předkladatele, pracovníci výroby, laboratoří, technické kontroly a obchodní vyřizující reklamace zákazníků. Některé větší slévárny a slévárny dodávající produkty pro automobilový průmysl mají FMEA technologie zařazenou jako plánovanou etapu při zavádění všech nových technologií. Analýzu FMEA technologie lze aplikovat „zpětně“ na všechny důležité technologické procesy. K tomu se musí shromažďovat informace o neshodách nebo vadách všech výrobků při technologickém zpracování. Pro aplikaci FMEA se používají tyto pomůcky, které umožňují kvantifikovat dílčí rizika,

✓ Výskyt = pravděpodobnost výskytu vady (neshody).
✓ Význam = míra obtěžování zákazníka vadou (neshodou).
✓ Odhalení = pravděpodobnost odhalení vady před expedicí zákazníkovi.

Pro bodové hodnocení (kvantifikaci) dílčích rizik lze použít pomůcky v tab. II až IV. Jsou pro konkrétní uživatele pouze ideovým návodem, skutečné pomůcky si musí každý uživatel vytvořit sám.

Tab. II Pomůcka pro bodové hodnocení „výskytu“

<table>
<thead>
<tr>
<th>Pravděpodobnost výskytu</th>
<th>Přílišná četnost</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>velmi nízká</td>
<td>1/50 000</td>
<td>1</td>
</tr>
<tr>
<td>nízká</td>
<td>1/15 000</td>
<td>3</td>
</tr>
<tr>
<td>střední</td>
<td>1/10 000</td>
<td>5</td>
</tr>
<tr>
<td>zvýšená</td>
<td>1/5 000</td>
<td>6</td>
</tr>
<tr>
<td>vysoká</td>
<td>1/1 000</td>
<td>8</td>
</tr>
<tr>
<td>velmi vysoká</td>
<td>1/500</td>
<td>10</td>
</tr>
</tbody>
</table>
Statistické metody řízení kvality odlitků.

Tab. III Pomůcka pro bodové hodnocení „významu“

<table>
<thead>
<tr>
<th>Míra obtěžování zákazníka</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>zákazník pravděpodobně vadu vůbec nezjistí</td>
<td>1</td>
</tr>
<tr>
<td>zákazník vadu zjistí a je mírně obtěžován</td>
<td>3</td>
</tr>
<tr>
<td>zákazník je silně obtěžován</td>
<td>5</td>
</tr>
<tr>
<td>výrobek ztrácí svou funkci</td>
<td>7</td>
</tr>
<tr>
<td>je ohroženo zdraví a život zákazníka</td>
<td>10</td>
</tr>
</tbody>
</table>

Tab. IV Pomůcka pro bodové hodnocení „odhalení“

<table>
<thead>
<tr>
<th>Pravděpodobnost odhalení</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>s jistotou</td>
<td>1</td>
</tr>
<tr>
<td>vysoká</td>
<td>3</td>
</tr>
<tr>
<td>střední</td>
<td>5</td>
</tr>
<tr>
<td>nízká</td>
<td>7</td>
</tr>
<tr>
<td>nepatrná</td>
<td>10</td>
</tr>
</tbody>
</table>

Pro aplikaci FMEA se používá formulář vytvořený speciálně pro tuto metodu. Formulář pro FMEA technologie obsahuje:
- Záhlaví (specifikace, návrhu, předkladatel, datum, pořadové číslo)
- Výrobní operace (číslo v technologickém postupu, název)
- Charakteristiky vady (způsob, příčina, důsledek)
- Rizika (výskyt, význam, odhalení a rizikové číslo, které je jejich součinem)
- Opatření (co se provede, do kdy, kdo odpovídá)
- Rizika (výskyt, význam, odhalení a rizikové číslo, které je jejich součinem)

Nejprve se vždy vyplňuje záhlaví. Uvede se první operace a s využitím databanky vad se vyhledají i a zaznamenají všechny možné druhy vad včetně příčin a důsledků. K další operaci se přechází teprve tehdy, až jsou členy týmu předchozí operace zcela vyčerpány. Ke kvantifikaci rizik se přistupuje až tehdy, když jsou ve formuláři zaznamenány všechny možné druhy vad pro všechny operace. Pak se zaznamenávají kvantifikace všech dílčích rizik: „výskyt – význam - odhalení“ (jako průměr stanovík jednotlivých členů týmu), jejich vynásobením se vypočítá riziková čísla, která se zapiší do formuláře. Opatření se vyplňují jen pro operace s nejvyššími rizikovými čísly nebo pro riziková čísla větší než dopředu stanovená hranice.

Po formulaci opatření se znovu provede kvantifikace dílčích rizik a znovu vypočítá riziková čísla, ale za situace, kdy si všichni členové týmu představí, že opatření je již realizováno. Pouze tehdy, když při opakování kvantifikací rizik dojde k výraznému poklesu rizikového čísla, má smysl opatření realizovat.

4.4 Analýza způsobilosti procesů

Analýzou způsobilosti procesů se ověřuje schopnost navrhovaných nebo již existujících procesů trvale poskytovat produkty splňující požadované kritéria kvality. Znalost způsobilosti procesu je důležitým podkladem nejen pro plánování a zlepšování kvality, ale zároveň
poskytuje výrobčům informace o vhodnosti procesu pro zajištění požadovaných znaků kvality produktu, o pravděpodobnosti výskytu neshodných produktů a o vhodných opatřeních ke zlepšení procesu. Protokol o způsobilosti procesu zvyšuje důvěru zákazníků k dodávaným výrobkům.

Postup analýzy způsobilosti procesu v případě měřitelných znaků kvality by měl probíhat v následujícím pořadí:

a) volba znaků kvality produktu.
b) analýza systému měření znaků kvality.
c) shromáždění údajů z probíhajícího procesu.
d) Zobrazení rozdělení sledovaného znaku pomocí histogramu.
e) Posouzení statistického zvládnutí procesu.
f) Ověření normality sledovaného znaku jakosti,
g) Výpočet indexů způsobilosti a jejich porovnání s požadovanými hodnotami,
h) Návrh a realizace opatření ke zlepšení procesu.

Častým problémem při hodnocení způsobilosti procesů je správná interpretace různých druhů stanovených indexů způsobilosti [2]. Lze doporučit vyhodnocení indexů způsobilosti procesu v tomto pořadí [4]:

Stanovení indexu způsobilosti C_{pk}

Index způsobilosti C_{pk} charakterizuje reálnou způsobilost procesu dodržovat předepsané tolerance sledovaného znaku kvality. Počítá se podle vztahu

$$C_{pk} = \min \{C_{pl}, C_{pu}\} = \min \left\{ \frac{\mu - LSL}{3\sigma}; \frac{USL - \mu}{3\sigma} \right\} \quad (1)$$

K výpočtu můžeme použít data z regulačních diagramů probíraných v kapitole 3, včetně označení parametrů v rovnici (1), kde:
- LSL je dolní regulační mez,
- USL je horní toleranční mez,
- σ je směrodatná odchylka sledovaného znaku,
- μ je střední hodnota sledovaného znaku.

Index způsobilosti C_{pk} je základním kritériem způsobilosti procesu. Jestliže je splněna podmínka, že $C_{pk} \geq 1,33$ je proces považován za způsobilý.

Stanovení indexu způsobilosti C_p

Index způsobilosti C_p charakterizuje potenciální způsobilost procesu. Posuzuje se jím, zda se hodnoty sledovaného znaku kvality, vzhledem k dosahované variabilitě, mohou vejít do tolerančních mezí. Počítá se jako poměr maximálně přípustné a skutečné variability hodnot znaku kvality bez ohledu na jejich umístění v tolerančním poli podle vztahu:

$$C_p = \frac{USL - LSL}{6\sigma} \quad (2)$$

Porovnání hodnoty C_p s hodnotou C_{pk} poskytuje informace o míře využití potenciální způsobilosti procesu, souvisící se správností seřízení procesu vůči tolerančním mezím. Mezi oběma indexy způsobilosti platí vztah:

$$C_p \geq C_{pk} \quad (3)$$
Nejlépe je potenciální způsobilost procesu využita (hodnoty obou indexů způsobilostí procesu se rovnoměří) v případě, kdy střední hodnota sledovaného znaku je seřízena na střed tolerance.

Znalost obou indexů způsobilostí rovnoměří umožňuje stanovit, zda je zlepšení procesu kvality dostačující jedno seřízení, nebo je potřeba realizovat opatření, která zajistí snížení variability sledovaného znaku kvality.

Standovení indexu C_{pmk}

Index způsobilosti $C_{p,k}$ je indexem, který kromě míry dodržení tolerančních mezí rovněž posuzuje míru dosažení cílové hodnoty T. Počítá se podle vztahu:

$$C_{pmk} = \min \left\{ \frac{\mu - LSL}{3 \sqrt{\sigma^2 + (\mu - T)^2}} \right\}$$

Míru dosažení cílové hodnoty T lze posoudit na základě porovnání tohoto indexu s indexem $C_{p,k}$. Pokud se oba indexy rovnoměří, leží střední hodnota sledovaného znaku kvality právě v cílové hodnotě, jestliže je C_{pmk} menší než $C_{p,k}$, proces se od cílové hodnoty znaku odchyluje.

4.5 Plánování experimentu

Experiment je častá forma zkoumání vztahů mezi faktory, které určují technologické procesy s cílem najít nejlepší postupy výroby pro nejlepší vlastnosti produktu. Experiment můžeme uskutečnit plánovaně a neplánovaně (živelně). Plánované experimenty lze považovat za vědecké, protože jsou opakovatelné a ověřitelné.

Plánované experimenty se řídí plánem experimentu. Plán experimentu DOEs = Design Of Experiments) stanovuje počet pokusů, ze kterých se experiment skládá, podmínky, za kterých se jednotlivé pokusy uskuteční, a pořadí pokusů. Z uvedeného je zřejmé, že se zde rozlišuje význam pojmu pokus = zjištění hodnoty ukazatele kvality za určitých předem plánovaných podmínek výroby a experiment = systém všech pokusů. Při sestavování modelu experimentu rozlišujeme úplný a částečný experiment.

Při úplném faktorovém experimentu se sestavuje plán experimentu pro každý faktor.

U částečného faktorového experimentu se plán sestaví jen pro několik faktorů (hlavní faktory a ostatní (vedlejší faktory) se vyjadří jako jejich kombinace. Tím se dosáhne snížení počtu pokusů. Je-li 2^k označení pro úplný experiment (ve kterém: 2 – počet úrovní faktorů, k - počet faktorů), pak 2^{k-p} je částečný faktorový experiment, p – je stupeň snížení. Chceme-li např. v plánu 2^6, který představuje $n = 64$ pokusů, snížit počet pokusů na polovinu tj. $2^5/2 = 2^{5-1}$ dostaneme částečný faktorový experiment, který představuje $n = 2^{5-1} = 32$ pokusů. Plány se snížením počtu pokusů na polovinu se nazývají poloviční plány.

Ukáže si vytvoření plánu experimentu pro jednoduchý praktický příklad. Chceme zjistit vliv chemického složení litiny s lupínkovým grafitem na velikost zákalky, což je v některých případech vada odlitku (650). Zkoumání bude provedeno na klínové zkoušce, přičemž se zákalka měří v mm. Chemické složení budou reprezentovat tři prvky (3 faktory): C, Si, Cr. Chemické složení budeme ověřovat na dvou úrovních. Seznam faktorů a úrovní je uveden v tab. V.
Tab. V Seznam faktorů a úrovní pro zadání příkladu

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Označení</th>
<th>Dolní úroveň</th>
<th>Horní úroveň</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>hm. %</td>
<td>3,2</td>
<td>3,8</td>
</tr>
<tr>
<td>Si</td>
<td>hm. %</td>
<td>1,8</td>
<td>2,6</td>
</tr>
<tr>
<td>Cr</td>
<td>hm. %</td>
<td>0,1</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Nyní se vytvoří tabulka pro úplný plán experimentu. Podle výše uvedených vztahů vychází \(2^3 = 8\) pokusů. Je výhodné psát plán v kódovaných proměnných, ve které -1 představuje dolní úroveň a +1 horní úroveň faktoru. Můžeme použít i další zjednodušení a psát jen znaménka plus a minus. Tab. VI uvádí plán experimentu sestavený pro náš příklad.

Tab. VI Plán experimentu „záلكa“ sestavený v kódovaných proměnných

<table>
<thead>
<tr>
<th>Pokus</th>
<th>C</th>
<th>Si</th>
<th>Cr</th>
<th>Výsledek Z [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Dále následuje provedení pokusů a jejich vyhodnocení. Jeho cílem je stanovit, která kombinace faktorů ovlivní velikost zákalky \(Z\). Nežádoucí jsou vysoké hodnoty, protože vedou ke vzniku zatvrdlin na odlitcích a k jejich zhoršené obrobitelnosti. Pro vyhodnocení můžeme použít různé metody od jednoduchých úvah, jako v tomto případě po pokročilé statistické metody [1].

4.6 Literatura

Shrnutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
5 METODY ZJIŠŤOVÁNÍ VAD A KONTROLA KVALITY ODLITKŮ

Členění kapitoly

✓ Vizuální kontrola (prohlídka)
✓ Měření, vážení
✓ Defektoskopie
✓ Chemické rozbory
✓ Strukturní rozbory
✓ Rozbor vlastností materiálu
✓ Literatura

Čas ke studiu: individuální

Číl
Po prostudování této kapitoly budete umět

• Určit vhodnost různých kontrolních postupů ke zjištění vad odlitků
• Princip a využití ultrazvukové defektoskopie
• Princip a využití radiologických metod

Výklad

Volba optimálních kontrolních a zkušebních metod, rozbor a zhodnocení výsledků zkoušek, závisí do značné míry na znalostech a zkušenostech a musí ve všech případech vycházet z přesné formulace požadavků na zjišťovaná fakta a jejich rozsah. Ke zjišťování vad odlitků se používají různé metody tak, aby se zjistily odchylky tvaru a rozměrů, hmotnosti, povrchové jakosti, porušení souvislosti, homogenity, neshody struktury, mechanických a fyzikálních vlastností a chemického složení [1]. V tab. I je uveden přehled způsobů zjišťování vad odlitků. V tabulce je uvedeno 6 skupin, které se pak dělí na 21 dílčích způsobů zjišťování vad odlitků. Pro každý z nich je v předposledním sloupci tabulky uvedena četnost případů použití pro některou z 90 druhů vad. Celkový počet 168 možností aplikace vysoce přesahuje počet vad. Je to dano tím, že v některých případech identifikace vad lze použít více způsobů nebo u obtížně identifikovatelných vad je to dokonce nutné. Poslední sloupec uvádí zkratku
metody (vytvořenou většinou z počátečních písmen názvu), která je pak používána v následujících kapitolách zabývajících se analýzou jednotlivých vad. V dalším textu budou uvedeny krátké charakteristiky jednotlivých způsobů s tím, že podrobnější informace lze najít v příspěvku Ptáčka [2] a v příručce [3], ze kterých autor také čerpal při zpracování této kapitoly.

5.1 Vizuální kontrola (prohlídka)

Vizuální kontrolou odlitku (VK) je nejjednodušší defektoskopickou kontrolou a lze ji objevit a identifikovat až 78 % vad. Vizuální kontrolu lze dělit podle použitých pomůcek na:

- Přímou kontrolu – kontrola pouhým okem nebo s lupou (VKL) při zvětšení 3 až 6 krát.
- Nepřímou kontrolu, která využívá dokonalejších optických a optoelektronických přístrojů a zařízení. Patří sem endoskopy, periskopy a televizní kamery. Slouží zejména pro pozorování dutin, které nejsou dostupné pro VK.

Podmínkou použití VK je dobré osvětlení, dobrý zrak kontrolujícího a někdy vhodná úprava povrchu.

5.2 Měření, vážení

Rozměrová kontrola (RK) patří k běžným způsobům přejímky odlitků. Provádí se proměření všech rozměrů a srovnání naměřených výsledků s výkresem. Mnohé slévárny provádí měření ručním orýsováním odlitku pomocí posuvných měřítek, mikrometrů, kalibrů a šablon. Stále více se uplatňují modernější a složitější přístroje na bázi světelné nebo laserové optiky. Tyto souřadnicové měřiče přístroje, známé pod zkratkou CMM ve spojení s digitalizací a následným zpracováním naměřených hodnot a jejich porovnáním s 3D modelem (výkresem) jsou schopny vygenerovat protokol se zjištěnými odchylkami.

Měření drsnosti povrchu odlitku (MDP). Požadavek na tuto kontrolu je ve slévárnách spíše vzácný. K tomu se používají drsnoměry (dílenské, přenosné a laboratorní). Drsnoměry měří drsnost povrchu na nastavené délce povrchu tak, že se motoricky posouvá měřící hrot a snímají se jeho příčné pohyby. Měření se má co nejvíce přiblížit standardní definici podle příslušné normy.

Stanovení hmotnosti odlitku (SHM) se provádí vážením a týká se vady / neshody číslo 140 „Nedodržení hmotnosti odlitku“. K vážení používáme standardní váhy s tím, že se musí dbát na pravidelné cejchování a certifikaci vah.
Tab. I Způsoby zjišťování vad

<table>
<thead>
<tr>
<th>Skupina</th>
<th>Poř.č.</th>
<th>Název</th>
<th>Četnost</th>
<th>Zkratka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vizuální prohlídka odlitku</td>
<td>1</td>
<td>Vizuální kontrola odlitku</td>
<td>70</td>
<td>VK</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Prohlídka odlitků pomocí lupy nebo průmyslového endoskopu</td>
<td>11</td>
<td>VKL</td>
</tr>
<tr>
<td>2. Měření, vážení</td>
<td>3</td>
<td>Rozměrová kontrola</td>
<td>4</td>
<td>RK</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Měření drsnosti povrchu odlitku</td>
<td>2</td>
<td>MDP</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Stanovení hmotnosti</td>
<td>1</td>
<td>SH</td>
</tr>
<tr>
<td>3. Defektoskopie</td>
<td>6</td>
<td>Zvuková zkouška</td>
<td>1</td>
<td>ZVK</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Ultrazvuková defektoskopie</td>
<td>7</td>
<td>UZD</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Radiologické zkoušky</td>
<td>10</td>
<td>RTG</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Kapilární penetrační zkoušky</td>
<td>4</td>
<td>KAPZ</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Elektromagnetické zkoušky</td>
<td>2</td>
<td>ELZ</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Zkoušky propustností (tlakování)</td>
<td>4</td>
<td>ZPR</td>
</tr>
<tr>
<td>4. Chemické rozbory</td>
<td>12</td>
<td>Stanovení chemického složení materiálu</td>
<td>5</td>
<td>CHEM</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Stanovení obsahu plynů</td>
<td>4</td>
<td>SPL</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Rentgenová spektrální mikroanalýza</td>
<td>8</td>
<td>SEM</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Metody určování fázového složení</td>
<td>5</td>
<td>FSL</td>
</tr>
<tr>
<td>5. Strukturní rozbory</td>
<td>16</td>
<td>Fraktografie</td>
<td>6</td>
<td>FRA</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Stanovení makrostruktury</td>
<td>4</td>
<td>SMA</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Stanovení mikrostruktury světelnou mikroskopii</td>
<td>14</td>
<td>SMI</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Elektronová mikroskopie</td>
<td>4</td>
<td>EMI</td>
</tr>
<tr>
<td>6. Rozbor vlastností materiálu</td>
<td>20</td>
<td>Stanovení mechanických vlastností</td>
<td>1</td>
<td>SMV</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Stanovení fyzikálních vlastností</td>
<td>1</td>
<td>SFV</td>
</tr>
</tbody>
</table>

5.3 Defektoskopie

Zvuková zkouška (ZVK)

Je jednou z archaických metod určení vady poklepem na odlitek využívající slyšitelný zvuk. Vychází se z rozdílu v rezonanci zvuku homogenního „zdravého“ odlitku s odlitkem s poruchou souvislosti. Je to méně spolehlivá, až nespolehlivá metoda rozeznání vad typu „Trhliny za tepla a Praskliny za studena“.

Ultrazvuková defektoskopie (UZD)

Rozlišujeme čtyři základní defektoskopické ultrazvukové metody, z nichž ve slévárenství jsou nejpoužívanější první dvě:

- Metoda průchodová.
- Metoda odrazová.
Metody zjišťování vad a kontrola kvality odlitků.

- Metoda rezonanční.
- Metoda umožňující zviditelnění vnitřní vady.

Základem **průchodové** metody je měření hodnoty ultrazvukové energie, která projde zkoušeným předmětem. Pracuje se dvěma ultrazvukovými sondami, které se umisťují vždy souose na protilehlých stěnách zkoušeného materiálu, z nichž jedna pracuje jako vysílač ultrazvukové energie a druhá jako přijímač. Je-li v materiálu vada nebo jiná nehomogenita, na jejíž ploše se odražejí šířící se vlny, tvoří se za vadou stín a do přijímače přichází menší hodnota energie. Vada se zjišťuje porovnáním hodnot přijaté energie materiálu neporušeného a vadasního. Tato metoda je vhodná pro zkoušení materiálů menších tloušťek. Je však omezena na zkoušení předmětů přístupných z obou stran, na kterých lze nastavit sondy souose.

Odrazová metoda je nejrozšířenější. Je založena na impulzním provozu ultrazvukového zdroje. Do kontrolovaného odlitku se vysílají krátké ultrazvukové impulsy, které se odražejí od povrchu odlitků a jeho vnitřních vad. Po odrazu v materiálu se ultrazvukové vlvy vrátí buď na tentýž, nebo na druhý měníc (jednosondový nebo dvousondový provoz), který pracuje jako přijímač. Časový průběh impulsu v materiálu je zobrazován na obrazovce přístroje. V okamžiku vylášení ultrazvukového impulsu se objeví na obrazovce počáteční echo. Po odrazu v materiálu se ultrazvukové vlny vrátí buď na tentýž měníc, nebo na druhý měníc (jednosondový nebo dvousondový provoz), který pracuje jako přijímač. Časový průběh impulsu v materiálu je zobrazován na obrazovce přístroje. Po odrazu v materiálu se ultrazvukové vlny vrátí buď na tentýž, nebo na druhý měníc (jednosondový nebo dvousondový provoz), který pracuje jako přijímač. Časový průběh impulsu v materiálu je zobrazován na obrazovce přístroje. Po odrazu v materiálu se ultrazvukové vlny vrátí buď na tentýž měníc, nebo na druhý měníc (jednosondový nebo dvousondový provoz), který pracuje jako přijímač. Časový průběh impulsu v materiálu je zobrazován na obrazovce přístroje.

Radiologické zkoušky (RTG)

Významnou metodou nedestruktivního zkoušení materiálu a odlitků je prozařování pronikavým zářením. Používá se nejčastěji záření rentgenové, záření gama, záření neutronové. Jako zdroje pronikavého záření slouží rentgeny, betatrony a radioizotopy. Kontrola prozařováním je svým dokumentálním charakterem kontrolou průkaznou a je podmíněna získáním jakosti zobrazení zkoušeného předmětu pro konečné závěry v klasifikaci vad. Všechny radiologické metody zkoušení jsou založeny na rozdílném zeslabení intenzity záření při jeho průchodu stěnou odlitku bez vady a s vadou. Tento jev je podložen základním zeslabovacím zákonem:

\[I = I_0 \cdot e^{-\mu \rho} \]

kde \(I_0 \) je intenzita dopadajícího záření, \(I \) je intenzita prošlého záření, \(\mu \) je lineární zeslabovací součinitel a \(\rho \) je hustota zkoumaného materiálu.

Radiologické zkoušky tedy nabyly značného významu zejména ve slévárenství. Podle druhu použitého zdroje pronikavého záření a podle registrace obrazu zkoušeného výrobku dělíme metody prozařování na:

- Metody radiografické, zahrnují zkoušky regisuropující obraz zkoušeného odlitku na fotografický film:
 - a) rentgenografie
 - b) betatronografie
 - c) gamografie
 - d) zvláštní radiografické metody – radiofotografie (fotografie ze štítu), rentgenová kinematografie, stereoradiografie, tomografie, xeroradiografie.
Metody zjišťování vad a kontrola kvality odlitků.

- Metody radioskopické – zahrnují zkoušky, zviditelnějící obraz zkoušeného materiálu na fluorescenčním snímku – rentgenoskopie.
- Metoda ionizační – spočívá v registraci prošlé intenzity záření zkoušeným materiálem indikátorem záření.

Při velkosériové výrobě odlitků, u kterých nejsou povoleny žádné vnitřní vady, např. součásti podvozku automobilů se musí provádět jejich 100%ní kontrola radiologickými metodami. V této oblasti došlo k výraznému pokroku, při kterém se uplatnila výpočetní technika a robotizace. Byly vytvořeny programy pro vyhodnocování radiologických snímků. Byly vytvořeny radiologické linky obsluhované roboty, kterými prochází odlitky (např. hliníkové disky kol pro automobily). Po prozření odlitku a vyhodnocení snímků počítačový program rozhodne o uvolnění nebo zamítnutí (zmetkování) neshodného odlitku. Další inovací je možnost prostorového zviditelnění vnitřních vad pomocí počítačové tomografie [4].

Kapilární penetrační zkoušky (KPZ)

Kapilárních zkoušek se používá k zjišťování necelisťostí povrchů materiálů a výrobků, to je takových vad, které souvisí bezprostředně s povrchem a jsou na povrchu otevřené, jako např. povrchové trhliny a póry. Princip těchto zkoušek spočívá v použití vhodné, kapilárně aktivní kapaliny, která pronikne do necelisťostí (trhliny) a po odstranění jejího přebytku z povrchu zkoušeného předmětu vzplaná zpět vlivem působení kapilárních sil, takže povrchovou necelisťost a její tvar zviditelní. Jako detekční kapaliny jsou vhodné pouze takové, které mají malé povrchové napětí (např. petrolej nebo terpentýn), tedy dobře smáčejí povrch. Rozlišujeme několik modifikací kapilárních zkoušek, které se většinou dělí podle chemické aktivity použité detekční kapaliny na:
- Zkoušky s použitím detekční kapaliny chemicky pasivní, tj. neporušující povrch zkoušeného kovu:
 a) Zkoušky barevnou kapalinou,
 b) zkoušky fluorescenční kapalinou,
 c) ostatní (např. zkouška olejová, petrolejová)
- Zkoušky s použitím kapaliny chemicky aktivní – zkouška leptací.

Vrstva pigmentu se nasytí detekční kapalinou, která ji buď zbarví (barevná kapalina bývá nejčastěji červená – sudanová červen), nebo stopa vady pigmentu fluoreskuje a pozoruje se v ultrafialovém záření. V případě použití kapalin chemicky aktivních dojde k chemické reakci mezi kapalinou a vrstvou pigmentu.

Zkoušky elektromagnetické (ELZ)

Zkoušek založených na magnetické a elektrické indukci lze použít pro zjišťování povrchových vad polotovarů a výrobků nebo vad uložených těsně pod povrchem. Zkoušky lze podle základního použitého zkušebního principu rozdělit na:
- Metody rozptylových toků (pouze pro feromagnetické materiály).
- Metody vřívých proudů.

Tato skupina defektoskopických zkoušek má široké uplatnění ve vstupní a výstupní kontrole odlitků ve slévárnách a strojírenských podnicích. Některé z variací těchto zkoušek lze plně automatizovat. Správné využití elektromagnetických zkoušek vyžaduje znalost teorie magnetismu a feromagnetismu a znalost magnetických vlastností zkoušených materiálů.
Jednou z velmi rozšířených technik kontroly povrchů různých výrobků z magnetických materiálů je magnetická prášková metoda, která je založena na principu rozptylových polí, kdy dochází k vystoupení magnetického pole v místě vady nad povrch zkoušeného předmětu. Díky tomuto jevu je možné zviditelnit zjištěnou vadu pomocí vhodného prostředku – magnetického suchého prášku, či roztoku suspenze magnetického prášku ve vodě. Pak hovoříme o magnetické polévací metodě.

Magnetická metoda prášková podobně jako metoda penetrační slouží ke zviditelnění povrchových vad, navíc umožňuje identifikovat necelistvosti nacházející se těsně pod povrchem avšak také s povrchem nespojené. Tato metoda klade podobné nároky na kvalitu povrchu jako metoda penetrační. Zkoušení se provádí u různých druhů materiálů – materiály však musí být v každém případě feromagnetické.

Zkoušky propustnosti (tlakování) odlitků (ZPR)

Jedná se o kontrolní metodu, pomocí které můžeme zjistit, zda je odlitek těsný a nepropouští tlakové médium (plynné nebo kapalné) během jeho dalšího provozního využívání. Popud při zkoušce je odlitek propustný znamená to, že jsou v něm vady (řediny, mikropórovitost). Týká se to hlavně tenkostěnných odlitků vyráběných z hliníkových slitin tlakovým litím. Pro každý typ zkoušeného odlitku musí být vyroben upínací přípravek k zajištění přívodu tlakového vzduchu. Zkoušený kus se ponoří do nádoby s vodou nebo jinou kapalinou a otevře se přívod tlakového vzduchu. Tlak vzduchu se pohybuje od 0,1 do 2 MPa dle ujednání s odběratelem. Pokud je díl propustný dojde jednak k poklesu tlaku a dále můžeme ve vodě podle vycházejících bublinek pozorovat místo výskytu vad. Takový odlitek se musí zmetkovat nebo v případech povolených zákazníkem se může opravit impregnací.

5.4 Chemické rozbory

Stanovení chemického složení materiálu (CHEM)

Analýza chemického složení umožňuje především kontrolu:

- Průběhu tavebního pochodu.
- Dodržení předepsaného rozmezí jednotlivých prvků podle požadavků příslušných materiálových listů. Ke stanovení chemického složení se nejčastěji používají dvě základní analytické metody:
 - Klasická chemická „mokrá“ analýza.
 - Spektrální analýza.

Klasická chemická analýza umožňuje stanovení obsahu všech základních a doprovodných prvků, které se ve slitinách vyskytují. Analytické hodnoty rozboru lze považovat za směrodatné jen tehdy, jestliže byl vzorek odebrán a připraven v souladu s normami. Vzorkování sestává z odběru vzorku, čímž vzniká hrubý vzorek, který se dále zpracovává na vzorek jemný, analytický.

Hlavní nevýhodou klasické chemické analýzy je značná pracnost a poměrně velké nároky na časy. Tyto nevýhody odstraňuje spektrální analýza využívající fyzikálních metod založených na elektrickém vynohodnění intenzity vybrané spektrální čáry analyzovaného prvku. Používané přístroje se nazývají automatické spektrometry (někdy kvantometry). Dělí se na:
Optické emisní

Rentgenové.

Optické emisní spektrometry analyzují světelné spektrum, kterým se rozumí soubor elektromagnetického záření emitovaného parami daného vzorku. Při vlastní analýze vzniká výboj mezi vzorkem a stříbrnou nebo wolframovou elektrodou a malý podíl analyzovaného vzorku se vypaří. Část odpařených atomů je uvedena do excitovaného stavu a emituje světlo. Světelný paprsek prochází spektrometrem a je rozložen podle vlnových délek. Vhodné spektrální čáry každého prvku (podle intenzity a polohy ve spektru) jsou izolovány výstupním štěrbinou. Světelný paprsek dopadá na fotonásobič, kde se světelná energie mění na elektrickou, kterou se nabíjí kondenzátor. Napětí kondenzátoru je mírou koncentrace analyzovaného prvku.

Rentgenová spektrální analýza využívá poznatku, že rentgenové záření, které vzniká působením vnější energie při přeskocích elektronů mezi různými energetickými hladinami v atomech má pro každý prvek charakteristickou vlnovou délu. Jeho intenzita je současně úmerná kvantitativnímu složení analyzovaného vzorku. Z analyzovaného vzorku vystupuje polychromatické záření, jehož intenzitu nelze přímo měřit. Jednotlivé speciální čáry se oddělí od ostatních pomocí upravených monokrystalů různých látek [5].

Stanovení obsahu plynů v kovu (SPL)

Plyny v kovech se rozumí vodík, kyslík a dusík. Stanovení vodíku v kovech patří mezi poměrně složité metody, především pro přísné nároky na způsob odběru a přípravy vzorků. Vodík se obvykle analyzuje v pevných vzorcích kruhového průřezu o průměru 6 až 12 mm. Při volbě rozměru vzorku je třeba mít na paměti, že rychlost uvolňování vodíku u vzorků vzrůstá s teplotou, se zmenšením průměru vzorku a nárůstem obsahu vodíku.

V provozu se doporučuje uchovávat vzorky v pevném oxidu uhličitém. Před vlastní analýzou je třeba vzorky odmastit, očistit povrch až na čistý lesklý kov a rychle ohřát na teplotu místnosti. Manipulace spojené s odběrem a přípravou vzorků je nutné dodržet, abychy byla zaručena dostatečná přesnost. Jestliže nejsou splněny podmínky odběru a přípravy vzorků, výsledky stanovení obsahu vodíku jsou nepřesné a obvykle nižší, než skutečné, protože atomy vodíku mají ze všech prvků nejmenší rozměr a největší difúzní rychlost.

U většiny přístrojů na stanovení obsahu vodíku v tavenině probíhá nejprve extrakce vodíku ze vzorku buď ve vakuu, nebo v proudu nosného plynu, kterým je většinou argon. Vlastní analýza se děje dodatečně.

Obsah kyslíku a dusíku ve vzorcích se stanovuje většinou společně na přístrojích obdobného principu. Extrakce probíhá v proudu nosného plynu, kterým je většinou helium. Moderní přístroje umožňují i analýzu oxidických a nitridických fází ve vzorcích. Nároky na odběr a přípravu vzorků nejsou zdáleka tak přísné jako při stanovení vodíku. Kyslík je výhodně analyzovat v pevných vzorcích, dusík je možné analyzovat i z třísek.

Rentgenová spektrální mikroanalýza (SEM)

Princip rentgenové spektrální mikroanalýzy spočívá v analýze charakteristického rentgenového záření, které je vybuzeno dopadem elektronového svazku u těch prvků v povrchové vrstvě vzorku, jejichž excitační potenciál je nižší než použité urychlovací napětí svazku. Vybuzené rentgenové záření se zpracovává dvěma způsoby:

a) Selekcí podle vlnových délek rentgenového záření – vlnové disperzní analýza.

b) Selekcí podle energie rentgenových kvant – energiové disperzní analýza.
Přístroje, elektronové mikroanalyzátorové („mikrosondy“) využívající buď prvního, nebo druhého způsobu zpracování signálu rentgenového záření se odlišují jak konstrukcí, tak i metodikou analýzy. Mikroanalyzátorové vlnově disperzního typu mají konstrukčně složité rentgenové spektrometry, způsob měření je z mechanického hlediska složitější, měření pomalejší, avšak dosahuje se přesnějších a reprodukovatelnějších výsledků. Ve srovnání s tím jsou mikroanalyzátorové energiově disperzního typu rozměrově menší, způsob měření je rychlejší a ve značné míře automatizován, avšak výsledky nejsou tak přesné a reprodukovatelné jako u přístrojů disperzního typu. Pokud jde o základní druhy a možnosti analýz, jsou oba typy mikroanalyzátorů navzájem srovnatelné.

Metoda RTG spektrální analýzy se uplatňuje při analýze dendritické mikroheterogenity slitin, při analyze změstků a fází a lze ji též využít při analýze strusek, oxidických vrstev, částic extrahovaných z povrchu lomů aj.

Metody určování fázového složení (FSL)

Tyto experimentální metody rentgenové a elektronové difrakce využívají Braggovy rovnice, které popisuje odraz monochromatického záření od soustavy rovnoběžných atomových rovin. Metody rentgenové difrakce umožňují stanovovat také veličiny, které souvisejí s pružnými a plastickými deformacemi krystalové struktury a jejími poruchami. Kromě mřížkových parametrů měřeného polykomponentního systému je to velikost zbytkových pnutí, hustota dislokací, četnost vrstevných poruch, hodnoty koncentrací intersticiálních atomů v tahu rodeckého oceli (martenzitu) a další parametry. Metoda nachází uplatnění i při měření fázového složení formovacích hmot a jeho změn během lití a chladnutí odlitků.

5.5 Strukturní rozbory

Fraktografie (FRA)

Fraktografická analýza, která se používá k hodnocení morfologie lomových ploch materiálu. Vychází se ze snímku lomové plochy. Pracuje-li se s malým zvětšením, jedná se o makrofraktografii, při velikém zvětšení o mikrofraktografii. Pro zhotovování snímků se používá světelná nebo elektronová mikroskopie. Zvláště vhodné je řádkovací elektronová mikroskopie. Fraktografie umožňuje odhalit příčiny vad a porušování materiálů a vyhodnocovat složité případy diagnostiky vad a poruch.

Stanovení makrostruktury (SMA)

Je to jedna z metod světelné mikroskopie zkoumající při malém zvětšení makrostrukturu materiálu nebo vizuální prohlídku vad na hranici viditelnosti lidského oka. Zkoumání makrostruktury se provádí na základě požadavků zákazníka a mohou to být například tyto normované postupy:
- Stanovení velikosti zrna ocelí a neželezných kovů.
- Stanovení velikosti austenitického zrna na lomu.
- Kontrola makrostruktury oceli hlubokým leptáním aj.

K makroskopickému zkoumaní patří také prohlížení vad 443 a skupiny 610 na binokulárním mikroskopu při 10 až 20 ti násobném zvětšení.
Metody zjišťování vad a kontroly kvality odlitků.

Stanovení mikrostruktury světelnou mikroskopii (SMI)

Metody a techniky světelné mikroskopie náleží k nejčastěji používaným experimentálním doplňujícím metodám, hledáme-li příčiny vad [6]. Metalografické výbrusy se připravují nejčastěji broušením speciálními brusnými papíry za mokra a leští se mechanicky, elektrolyticky nebo chemicky. K pozorování mikročistoty, tj. vměsteků, mikroředin, mikrostažení a jiných, se vzorky leští mechanicky s použitím diamantových past a obvykle se neleptají. K pozorování struktury je třeba vyvolat strukturní reliéf vhodnými činidlly. Výbrusy se pozorují v odraženém světle a to buď ve světlém, nebo tmavém poli. Dosažitelné užitečné zvětšení světelných mikroskopů je asi 750 násobně pro běžné objektivy.

Světelné mikroskopy se vyznačují ve srovnání s elektronovými velmi malou hloubkou ostrosti. Současné metalografické mikroskopy jsou vybaveny zpravidla též zařízením pro polarizované světlo, interferenční a fázový kontrast a mikrotvrdoměrem.

Elektronová mikroskopie (EMI)

V současné době se používají dva typy mikroskopů. Jsou to elektronové mikroskopy s pevným svazkem (transmisní mikroskopy) a s řádkujícím svazkem elektronů (řádkovací nebo rastrová mikroskopie). Toto rozdělení není však zcela přesné, poněvadž moderní typy elektronových mikroskopů umožňují pracovat jedním i druhým způsobem. Velkou výhodou elektronových mikroskopů je vysoká hloubka ostrosti a možnost získat řádově větší rozlišovací schopnost a tím i účinně zvětšení ve srovnávání se světelnými mikroskopky.

V transmisním elektronovém mikroskopu, jehož základní princip zobrazení je stejný jako u světelného, pozorujeme buď otisky povrchu výbrusu, nebo tenkou kovovou fólii. Preparát se pozoruje buď na fluorescenčním stínítku, nebo se zachycuje na fotografickou desku. Intenzita zobrazených primárních elektronů přitom klesá s rostoucí tloušťkou preparátu. V elektronových mikroskopcích s urychlovacím napětím asi do 100 kV nemá svazek primárních elektronů dostatek energie, aby pronikl tenkou kovovou fólií a proto se pracuje s technikou otisku (replik). Používané plán kovových fólií je neobyčejně pracná a používá se při analýzách příčin vad ojediněle.

Princip zobrazení povrchů v elektronovém řádkovacím mikroskopu se však od předcházejícího liší. Po povrchu vzorku řádkující primární zřízený elektronový svazek vyrazí z povrchově vrstvy vzorku sekundární elektrony, jejichž intenzita se převádí vše formě jasu na obrazovku. Řádkovací elektronové mikroskopy se významně uplatňují při ověřování kvality odlitků a při určování příčin jejich vad. Připrava vzorků pro pozorování je jednoduchá. Je zapotřebí, aby vzorky pro pozorování v sekundárních elektronech byly elektricky vodivé.

Povrch povrchů je nutno před pozorováním napařit tenkou vrstvou kovu, přičemž postačuje technicky čistá měď a vrstva o tloušťce 5 nm. Povrchy, které je třeba analyzovat také z hlediska chemického složení, se napařují uhlíkem o vrstvě tlusté asi 30 nm.
5.6 Rozbor vlastností materiálu

Stanovení mechanických vlastností (SMV)

Zkoušky mechanických vlastností jsou při výrobě odlitků až na výjimky nezbytnou součástí jak vlastního výrobního procesu, tak i kontroly kvality vyrobených slitin a odlitků. Zkoušky mechanických vlastností se všeobecně dělí:

a) Podle stavu napjatosti (při jednoosém a vícerém stavu napjatosti).

b) Podle způsobu zatěžování (zkoušky tahem, tlakem, ohybem, krutem, střihem).

c) Podle časového průběhu zatěžovací síly (zkoušky statické a dynamické).

d) Podle účinku zatěžování na zkušební těleso (zkoušky destruktivní při nichž se těleso deformuje či poruší a nedestruktivní, při nichž nenastane nepřípustné poškození tělesa či odlitku).

Ze současného širokého výběru zkoušek mechanických vlastností lze považovat za základní zkoušky tahem, zkoušky tvrdosti, zkoušky vrubové houževnatosti a lomové houževnatosti. Pro tyto a ostatní případy je třeba hledat informace ve speciální literatuře [3,6,7].

Stanovení fyzikálních vlastností (SFV)

Jde většinou o zkoušení odlitků se specifickými vlastnostmi. Patří sem zvýšená odolnost proti korozi, magnetické vlastnosti, stálost za zvýšené teploty, požadavky na tepelnou a elektrickou vodivost, zvýšená odolnost vůči otěru apod. Fyzikální vlastnosti se zkoumají v případě požadavků zákazníka.

Na závěr jako shrnutí lze použít přehlednou tabulku defektoskopických metod a jejich vhodnosti z publikací Ptáčka [2,6].
Tab. II Přehled a použitelnost defektoskopických metod pro zjišťování vad, které se běžně vyskytují ve slévárenských a hutnických výrobcích [2].

5.7 Literatura

Shrnutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
6 DIAGNOSTIKA A ŘÍZENÍ KVALITY ODLITKŮ

Členění kapitoly

✓ Technická diagnostika
✓ Diagnostika vad odlitků
 o Anamnéza
 o Identifikace vady
 o Diferenciální diagnostika
 o Stanovení příčin vzniku vady, návrh opatření k odstranění vady
 o Preventivní opatření proti vzniku vady a jejich realizace
 o Shrnutí
✓ Úvod do charakteristiky vad odlitků
✓ Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

• Charakterizovat základní principy a postupy diagnostikování vad odlitků.
• Aplikovat anamnézu při identifikaci vad odlitků
• Stanovit postup pro určení příčiny vady.
• Obecná preventivní opatření k prevenci vad odlitků

Výklad

6.1 Technická diagnostika

Pojem diagnóza byl původně převzat z řečtiny jen pro lékařské vyšetření pacienta a teprve mnohem později byl využit i pro technické aplikace. Dia-gnosis je v řečtině „skrze poznání“. Jak uvádí Kreidl a Šmíd [1] technická diagnostika je samostatný obor zabývající se bezdemontážními a nedestruktivními metodami a prostředky stanovení technického stavu objektu. Technická diagnostika na rozdíl od lékařské diagnostiky je založena na znalostech, které kromě heuristického charakteru mají kauzální charakter, nebo dokonce na matematických modelech diagnostikovaných objektů. Základními úkoly diagnostiky jsou:

 a) detekce vady nebo poruchy, tj. identifikace vady nebo identifikace úplné nebo částečné poruchy objektu,
b) lokalizace vady nebo poruchy tj. určení místa vady nebo poruchy v objektu.

Diagnostika je vyhodnocení okamžitého technického stavu objektu. Z hlediska terminologie spolehlivosti se jedná o vyhodnocení provozuschopnosti objektu za daných technických podmínek. Spolehlivost, jako jeden ze základních znaků jakosti každého technického zařízení, je podmíněna racionálním sledováním technického stavu objektu a včasným detekováním fyzikálních změn a procesů. Z definice vyplývá, že technická diagnostika se zabývá sledováním různých objektů (např. technických zařízení), během jejich provozu.

Pojetí diagnostiky, tak jak ji definuje technická diagnostika lze jen částečně aplikovat na diagnostikování vad odlitků. Pro tento případ je vhodným vzorem lékařská diagnostika, což je nauka o určování chorob (ve slévárenství vad). Stanovení diagnózy spočívá v určení choroby nemocného, přeneseně je to i rozpoznání jejích příčin.

6.2 Diagnostika vad odlitků

Diagnoza a analýza vady odlitku je komplexní problém. Poznání vady je klíčem k jejímu odstranění. V této kapitole bude stanoven systematický přístup k identifikaci vady, stanovení příčin a doporučení pro jejich odstranění a prevenci. Postup při diagnostice a prevenci vad odlitků lze rozdělit do osmi kroků:

1. **Anamnéza**
2. **Identifikace**
3. **Diferenciální diagnostika**
4. **Speciální analýzy materiálu (chemické, strukturní, defektoskopické)**
5. **Konečná diagnóza**
6. **Stanovení příčin vzniku vady, návrh opatření k odstranění vady („léčby“)**
7. **Preventivní opatření proti vzniku vady a jejich realizace.**
8. **Vyhodnocení**

Postup při stanovení diagnózy vady odlitku naznačuje blokové schéma na obr. 1
6.2.1 Anamnéza

Anamnéza („předchorobí“, vzpomínání, soubor informací k analýze situace). Pro vadný odlitek je třeba připravit všechny údaje o materiálu vedení tavby, výrobě a materiálu forem a jader a slévárenské technologii (vtoková soustava, nálitky, výfyky). Vhodné jsou záznamy i za delší období (trendová analýza). Informace potřebné pro sestavení anamnézy naznačil Hasse ve své monografii [3]. Při anamnéze zjišťujeme všechny okolnosti, které vzniku vady odlitku předcházely a klademe si následující otázky.

- Liší se výrobní podmínky „nemocného“ odlitku od předpisu? Proveďte porovnání z dlouhodobého hlediska.
- Vzpomenete si, co se změnilo? Měnili se dodavatelé surovin a pomocných materiálů?
- Setkali jste se už s takovou vadou u jiných odlitků?
- Pokud se jedná o opakovanou výrobu jaký je podíl neshodné výroby (zmetků) a jaký byl dříve?
- Kdy se vada poprvé objevila?
- Jedná se o ojedinělý případ, nebo se vyskytuje epidemicky ve velkém rozsahu?
- Je výskyt vady případitelný k určitému času (pracovní směna)? Jsi neshodné kusy prvními nebo posledními z licí pánve?
- Kolik kusů je neshodných z formovacího rámu, tavby, kokily, pánve?
- Měnily se výrobní technologické postupy?

6.2.2 Identifikace vady

Nejprve si přečtěme příběh, který na úvod svého příspěvku o identifikaci vad odlitků vyprávěl T. Bex [4]. Stal se během studené války v USA. Jeden reportér se oblékl do uniformy důstojníka Rudé armády. Procházal se po Washingtonu, jel osobním vlakem do New Yorku, toulal se po Wall Streetu a po náměstí Times Square, mluvil anglicky

Identifikace vad bývá spojená se stanovením příčin jejich vzniku a se stanovením opatření k zamezení jejich výskytu a k prevenci. Vychází nejprve ze vzhledových (morfologických) a technologických znaků. Rozhodující význam pak mají informace pocházející ze sběru dat o podmínkách výroby. Odlitky, nebo alespoň skupiny odlitků, mají být adresné, to znamená pošetřené či zvětšené nebo jiným znakem, v němž je zakodováno např. datum výroby, číslo tábory a jiné skutečnosti důležité pro bližší určení původu vady. Prvotní informaci pro identifikaci je anamnéza. Vady můžeme zjišťovat šesti způsoby:

- prohlídka odlitku,
- měření, vážení,
- defektoskopie
- mikroskopické rozbor
- chemické rozbor
- rozbor vlastností materiálů.

Nejčastější metodou je vizuální kontrola odlitku, pak následuje stanovení mikrostruktury a prozařování odlitků. Často však musíme metody kombinovat a stává se, že k určení vady musíme použít postupně několik způsobů. Vady odlitků jsou velmi mnohotvárné a ve svých příznacích značně variabilní. Identifikace vady je složitý intelektuální výkon, který vyžaduje kromě podobnosti i zkušenost a intuici. K chybám v identifikaci vad odlitků dochází z důvodu neznalosti, nesprávného úsudku a nedostatku informací. Pokud nelze vady určit hned v prvních krocích, přecházejme do etapy diferenciální diagnostiky, ve které musíme použít doplňkové rozbor a speciální metody. Patří sem např. defektoskopické zkoušky odlitků, světelná a elektronová mikroskopie, metody rentgenové a elektronově difrakce, rentgenová spektrální mikroanalýza aj. Těmito postupy se snažíme lépe zachytit morfologii vady, provést bodovou analýzu různých materiálů ve vadě apod. Provdá se také revize technologie odlévání pomocí simulačních programů a využívání se další moderní metody [6, 7]. Postup identifikace popsáv autor této učebnice ve svých dřívějších pracích [5,8] a vývojový diagram postupu identifikace vady a stanovení příčin vzniku byl uveden jako příklad v kapitole 3 - z těchto zkušeností a názoru dalších odborníků byl sestaven níže uvedený přehled nejčastějších chyb, kterých se dopouštíme při identifikaci a terapii vad odlitků:
• Nesystematický přístup – „střelba nazdařbůh“ (hit or miss).
• Místo řešení problému se předešvím hledá „viník“ nemoci.
• Předčasné (zavádějící) závěry.
• Ve snaze o co nejrychlejší řešení se začne měnit technologie odlévání.
• Po určení příčiny se realizuje současně několik opatření k léčbě.
• Po „vyléčení nemoci“ se na problém zapomene, nezdokumentuje se a nenajde se čas na vyhodnocení a použití do budoucnosti. Nepřijmou se preventivní opatření.

Jsou to většinou prohřešky proti standardům managementu kvality řady ISO 9000, v případě, že ho slévárna má zaveden a certifikován.

6.2.3. Diferenciální diagnostika

6.2.4. Stanovení příčin vzniku vady, návrh opatření k odstranění vady

Poučme se od Jana Amose Komenského: „Vizme tedy každé zvláště: Nejprve nedostatky a nemoci, potom příčiny, posléze léky“. Analýza příčin a podstaty vad a hledání prostředků k jejich odstranění a prevenci vyžaduje nejhlubší znalosti zákonitostí slévárenských pochodů, technologie a zařízení, které se na výrobě odlitků podílejí. Vady odlitků jsou výsledkem několika příčin a jejich společného působení.

Mnoho příčin pramení už z konstrukce odlitku, jak z jeho nevhodně zvoleného tvaru, tak i materiálu. V tomto směru stále platí, že je nutná dobrá spolupráce slévárenských techniků s konstruktéry při posuzování technologického konstrukce. Další příčiny vzniku zmetku spočívají v metalurgii. Příprava materiálu je záležitostí metalurga a taviče. Neznámá je dodržet předepsané chemické složení, ale musí být dodrženy všechny zásady vedení tavy, úpravy tekutého kovu a dodržení předepsaných teplot. Velká část zmetků bývá zaviněna nesprávně navrženým výrobním postupem odlitku. Znamená to správnou volbu přidavků, úkosů, nálitků, vtokové soustavy, ale i formovacích materiálů, chlazení odlitků a
podobně. Součástí dobře fungující technické přípravy výroby je i výroba dobrého modelového zařízení a nářadí. Nejčastější příčinou vzniku vad odlitků bývá nedodržení technologické kázne na všech úsecích výroby: v přípravě formovacích materiálů a tavírně, jaderně, formovně, čistírně, při skladování odlitků i v jejich expedici.

Postup při určování příčin vzniku vady vychází z údajů o výrobním procesu a o podmínkách výroby odlitků. Zejména u sériové výroby by měla být zajištěna sledovatelnost výroby. U kusové výroby většinou nebývá problém, aby odlitky byly opatřeny číselným kódem. Vycházíme dále z toho, že slévárna provádí různá měření a výsledky eviduje a archivuje. Známe tak chemické složení jednotlivých taveb kovu, parametry formovacích směsí, teploty formy, kovu a jiné vlastnosti. Pro definování příčin vady se využívá diagram příčin a následků a identifikují se všechny možné příčiny vady. Využíváme týmovou práci metodou „brain storming“, Ishikawa diagram aj. [10].

Pokud nejsme schopni určit příčiny vady ze základní statistické charakteristiky, pak používáme rozličné statistické metody podle různého stupně zavedení statistického řízení procesu SQC (Statistical Quality Control [11]). V první úrovni SQC kontrolujeme normalitu a stabilitu procesu pro jednotlivé složky, parametry. Jedná se o výsledky hodnocení regulačních diagramů, vyhodnocení aritmetických průměrů aj. Druhá úroveň SQC využívá trendovou analýzu zpracovává údajů o procesu výroby za několik následujících dnů, týdnů a měsíců a porovnáváme tyto trendy s výskytem vad. Třetí analytická úroveň SQC využívá pro rozhodnutí o příčině vady rozbor statistické významnosti rozdílu mezi různými soubory např. vady a většinou bývá končenou možností k určení příčiny vady. Ale i zde se musí uplatnit zkušenost a intuice technika, který provádí hodnocení. Nástrojům kvality jsme se věnovali v i kapitole 3.

6.2.5. Preventivní opatření proti vzniku vady a jejich realizace

Následuje návrh a realizace opatření k odstranění příčin vady – léčba (terapie). Po realizaci opatření se provádí kontrola jejich účinnosti. Hodnocení spočívá v porovnání výsledků dosažených před a po realizaci opatření. Nastává trvalá eliminace příčin. Pokud se potvrdí správnost určení příčiny a volba léčby, potvrzuje se zároveň správnost diagnózy. V tomto kroku se musí změnit a doplnit veškerá technologická i kontrolní dokumentace a provést školení zaměstnanců. Preventivní opatření se přijímají pro každou vadu individuálně. Existují však i obecně preventivní opatření:

- Vytvoření managementu kvality tak, aby vady na odlitcích nevznikaly.
- Využití mezinárodních standardů jakosti.
- Školení zaměstnanců.
- Použití pokrokových technologických postupů (filtrace kovu, pomůcky dosazování kovu).
- Optimalizace technologie odlévání pomocí simulačních programů.
- Mimopecní úprava kovu – zabránit reoxidaci kovu, snížení obsahu plynů.
- Stabilita v používání (nákupu) surovin a materiálů.

Výsledky by měly být zdokumentovány. Tato fáze se často opomíjí a zpráva o průběhu řešení doložená konkrétními daty, fotografemi a rozhovory se nezpracovává. Nedokumentují se výsledky ani postup vedoucí k odstranění problému. Tím se ztrácí možnost pro rychlé řešení podobných situací a krizí jakosti v budoucnu.
6.2.6. Shrnutí

Jedině pomocí správného diagnostikování vad můžeme odhalit příčiny neshod, zahájit léčbu, přijmout preventivní opatření k zabránění jejich vzniku. Slévárna musí vytvořit takový systém managementu jakosti, aby vady na odlitcích pomocí preventivních opatření nevznikaly a nemusely se odstraňovat („léčit“). Vyrábět průmyslově odlitky bez vad a neshodných výrobků – zmetků zatím neumíme. Každý vyřazený odlitek je však zdrojem poučení, měl by být podroben systematickému rozboru. Výsledky by měly být evidovány a statisticky hodnoceny podle dnes dobře známých nástrojů jakosti. Pokud slévárna má zaveden a dobře udržován systém řízení jakosti podle mezinárodních norem managementu jakosti může se krizím jakosti a „nemocným odlitkům“ vyhnout a pokud dojde k selhání systému lze předpokládat, že se vzniklé problémy se rychleji vyrovná. Z nedávné doby existují příklady inteligentních postupů při řízení slévárenských pochodů [12].

6.3 Úvod do charakteristiky vad odlitků

Obr. 1 Četnost výskytu neopravitelných vad odlitků (zmetkovitost v %) v sedmi třídách vad odlitků ve slévárnách slitin železa
Na obr. 1 je uveden diagram četnosti výskytu neopravitelných vad (zmetků) sestavený ze statistického šetření ve slévárnách bývalého Československa [13], kdy existovaly celostátní přehledy sestavované technickými sbory sléváren. Jedná se o rozbor staré více než 25 let, ale domnívám se, že průměrné hodnoty se příliš neliší od současného stavu. Jednotlivé sloupce v diagramu představují množství zmetků v jednotlivých třídách vad, levý sloupec je pro ocelové odlitky a pravý pro grafitické litiny. Z přehledu, bez ohledu na odlévaný materiál můžeme vypozorovat, že 80% zmetků tvoří 3 třídy vad: 100, 400 a 500. Statistiky ze sléváren hliníkových odlitků ukazují, že neshodné výrobky se u nich také soustřeďují do těchto 3 tříd vad. V každé třídě je několik dominantních v.

<table>
<thead>
<tr>
<th>Příčiny</th>
<th>Počet ovlivněných vad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formovací materiál</td>
<td>44</td>
</tr>
<tr>
<td>Výroba forem / jader</td>
<td>37</td>
</tr>
<tr>
<td>Podmínky odlévání</td>
<td>35</td>
</tr>
<tr>
<td>Materiál odlítku</td>
<td>34</td>
</tr>
<tr>
<td>Vtoková soustava</td>
<td>30</td>
</tr>
<tr>
<td>Tavení, úprava tekutého kovu</td>
<td>27</td>
</tr>
<tr>
<td>Konstrukce odlítku</td>
<td>22</td>
</tr>
<tr>
<td>Dokončovací operace, TZ</td>
<td>18</td>
</tr>
<tr>
<td>Odvzušnění formy, výfuky</td>
<td>12</td>
</tr>
<tr>
<td>Modelová zařízení</td>
<td>12</td>
</tr>
<tr>
<td>Poloha odlítku ve formě</td>
<td>11</td>
</tr>
<tr>
<td>Chladitka</td>
<td>11</td>
</tr>
<tr>
<td>Nálitky</td>
<td>8</td>
</tr>
<tr>
<td>Přídavky</td>
<td>6</td>
</tr>
<tr>
<td>Zalévané předměty</td>
<td>5</td>
</tr>
<tr>
<td>Formovací rámé</td>
<td>3</td>
</tr>
<tr>
<td>Smrštění</td>
<td>2</td>
</tr>
<tr>
<td>Celkem</td>
<td>317</td>
</tr>
</tbody>
</table>
Obr. 2 Grafické znázornění různých příčin (17 působících vlivů očíslovaných v tab. I), které působí na počet vad odlitků

Tab. II Četnost možných příčin vad ve skupinách podle klasifikace [13]

<table>
<thead>
<tr>
<th>Skupina vad</th>
<th>Název</th>
<th>Počet vad V</th>
<th>Četnost příčin P</th>
<th>Poměr P/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>440</td>
<td>Staženiny</td>
<td>6</td>
<td>43</td>
<td>7,2</td>
</tr>
<tr>
<td>520</td>
<td>Nekovové vměstky</td>
<td>6</td>
<td>28</td>
<td>4,7</td>
</tr>
<tr>
<td>610</td>
<td>Mikroskopické dutiny</td>
<td>3</td>
<td>22</td>
<td>7,3</td>
</tr>
<tr>
<td>410</td>
<td>Bubliny</td>
<td>5</td>
<td>21</td>
<td>4,2</td>
</tr>
<tr>
<td>110</td>
<td>Chybějící část odlitku bez lomu</td>
<td>7</td>
<td>16</td>
<td>2,3</td>
</tr>
<tr>
<td>310</td>
<td>Trhliny</td>
<td>3</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>510</td>
<td>Struskovitost</td>
<td>2</td>
<td>13</td>
<td>6,5</td>
</tr>
<tr>
<td>130</td>
<td>Nedodržení rozměrů, nesprávný tvar</td>
<td>4</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>210</td>
<td>Připečetiny</td>
<td>3</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>270</td>
<td>Nepravidelnost povrchu odlitku</td>
<td>7</td>
<td>12</td>
<td>1,7</td>
</tr>
<tr>
<td>230</td>
<td>Nároty</td>
<td>4</td>
<td>11</td>
<td>2,8</td>
</tr>
<tr>
<td>430</td>
<td>Odvařeniny</td>
<td>3</td>
<td>11</td>
<td>3,7</td>
</tr>
<tr>
<td>530</td>
<td>Makrosegregace a výcezeniny</td>
<td>4</td>
<td>11</td>
<td>2,8</td>
</tr>
<tr>
<td>740</td>
<td>Nevyhovující homogenita odlitku</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>220</td>
<td>Zálupy</td>
<td>3</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>260</td>
<td>Zatekliny</td>
<td>3</td>
<td>8</td>
<td>2,7</td>
</tr>
<tr>
<td>340</td>
<td>Porušení souvislostí</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>650</td>
<td>Zatvrdlina, zákalka</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>120</td>
<td>Chybějící část odlitku s lomem</td>
<td>3</td>
<td>5</td>
<td>1,7</td>
</tr>
<tr>
<td>320</td>
<td>Praskliny</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>620</td>
<td>Vměstky</td>
<td>3</td>
<td>4</td>
<td>1,3</td>
</tr>
<tr>
<td>680</td>
<td>Jiné odchylky od mikrostruktury</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>140</td>
<td>Nedodržení hmotností</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>420</td>
<td>Bodliny</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>560</td>
<td>Nevyhovující lom</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>630</td>
<td>Nesprávná velikost zrna</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>240</td>
<td>Výronky</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>330</td>
<td>Porušení souvislostí</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>540</td>
<td>Broky</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>550</td>
<td>Kovové vměstky</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>640</td>
<td>Nesprávný obsah strukturních složek</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>660</td>
<td>Obrácená zákalka</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>670</td>
<td>Odhlušení povrchu</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>Výpotky</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>280</td>
<td>Vady povrchové ochrany</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>710</td>
<td>Nesprávné chemické složení</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>720</td>
<td>Odchylky hodnot mechanických</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>730</td>
<td>Odchylky hodnot fyzikálních vlastností</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

CELKEM | 90 | 317 |

Nakonec můžeme analyzovat výsledky v členění podle tříd vad. Souhrnnou tabulku přináší tab. III a koláčový diagram na obr. 3. Dominují zde třídy 400 a 500, ve kterých také leží skupiny vad s vysokými počty činitelů majících vliv na vznik vad konkrétní skupiny.
Zajímavé je také srovnání s obr. 1, ve kterém třídy 400 a 500 patří k těm, ve kterých je nejvyšší zmetkovitost odlitků. Vysoký počet příčin má také třída 200 „Vady povrchu odlitků“, která naopak patří k třídám s nižší zmetkovitostí. Vady povrchu jsou také náročné na řešení, ale často se dají opravit a nemusí se zmetkovat. Pozorný čtenář si jistě všimne skutečnosti, že vady třídy 100 figurují v přehledu zmetkovitosti na druhém místě, ale počty příčin vad v této třídě jsou až na 5. místě. Lze to vysvětlit tím, že je zde celá řada vad, kde je jen jedna nebo 2 příčiny, např. špatný model a mechanické poškození odlitku.

Tab. III Četnost možných příčin vad odlitků v třídách 100 až 700

<table>
<thead>
<tr>
<th>Třída vady</th>
<th>Název</th>
<th>Počet</th>
<th>Poměr P/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Vady tvaru, rozměrů a hmotnosti</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>200</td>
<td>vady povrchu</td>
<td>23</td>
<td>56</td>
</tr>
<tr>
<td>300</td>
<td>Porušení souvislosti</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>400</td>
<td>Dutiny</td>
<td>15</td>
<td>78</td>
</tr>
<tr>
<td>500</td>
<td>Makroskopické vměstky</td>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>600</td>
<td>Vady mikrostruktury</td>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>700</td>
<td>Vady chemického složení a vlastností odlitků</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td>90</td>
<td>317</td>
</tr>
</tbody>
</table>

Obr. 3 Diagram počtu možných příčin vad ve třídách 100 až 700

6.4 Literatura

Σ Shrunutí pojmů kapitoly

– Je uvedeno v části „Členění kapitoly“

❓ Otázky k probranému učivu

– Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
7 TŘÍDA VAD 100: VADY TVARU ROZMĚRŮ A HMOTNOSTI

Členění kapitoly

- Skupina vad 110: CHYBĚJÍCÍ ČÁST ODLITKU BEZ LOMU (110)
- Skupina vad: CHYBĚJÍCÍ ČÁST ODLITKU S LOMEM (120)
- Skupina vad: NEDODRŽENÍ ROZMĚRŮ, NESPRAVNÝ TVAR (130)
- Skupina vad: NEDODRŽENÍ HMOTNOSTI ODLITKU (140)
- Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět
- Charakterizovat vadu Nezaběhnutí
- Charakterizovat vadu Přesazení
- Charakterizovat vadu Zborcení, deformace

Výklad

Vady jsou v této třídě rozděleny do čtyř skupin. Ke zjištění vady stačí vizuální kontrola, rozměrová kontrola a vážení. Vady ve skupinách jsou rozděleny tak, že ihned z jejich názvu můžeme rychle určit příčinu jejich vzniku. Jsou to vady většinou neopravitelné a způsobené selháním lidí, jejich nepozorností, nedůsledností a nedodržením pracovních postupů. Ve statistikách četnosti vad tvoří stejně jako dutiny (400) nebo makroskopické vmiestky (500) téměř třetí část vad (tab. II v kapitole 3). Třída 100 obsahuje 15 vad, z nichž největší pozornost zasluhují dvě vady: Nezaběhnutí (111) a Přesazení (132). Jsou to vady, které kromě lidského činitele ovlivňují působení mechanických sil, podmínky ochlazování kovu ve formě a fyzikálně chemická interakce kovu a formy. Těmto vadám se budeme proto podrobně věnovat více než ostatním.
7.1 Skupina vad 110: CHYBĚJÍCÍ ČÁST ODLITKU BEZ LOMU (110)

Vady ve skupině 110 vznikají při plnění formy tekutým kovem, jsou zjistitelné velmi brzy, ihned po vytažení odlitku z formy. K stanovení nápravných opatření existuje rychlá zpětná vazba a vzniklé škody nejsou tak vysoké jako u jiných skupin vad.

NEZABĚHNUTÍ (111)

<table>
<thead>
<tr>
<th>Schéma vady</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Popis vady

Vyznačuje se nedokonalým vytvořením tvaru odlitku, zpravidla v tenké stěně nebo horní části, protože předčasně ztuhlo čelo proudu kovu, ve vodorovném nebo svislém směru. Odlitek tak nesplňuje některý z hlavních požadavků – úplnost tvaru, správnost rozměrů.

a přesnost podle výkresu. V místě vady je porušena souvislost a chybí zde materiál odlitku. Povrch odlitku v okolí vady je standardně drsný (má stejnou drsnost jako litý povrch zbývajícího odlitku). [1].

Charakteristika vady [2,3]

Příčinou této vady je nevyhovující zabíhavost kovu, tzn. nevhodné fyzikální a hydrodynamické vlastnosti taveniny a řada slévárenských technologických činitelů. Z vlastností taveniny jsou to:

- Dynamická viskozita a tekutost.
- Povrchové napětí.
- Chemické složení kovu včetně obsahu plynů a vměstek.
- Měrná tepelná kapacita, součinitel tepelné vodivosti a hustota.
- Licí teplota a stupeň přehřátí kovu.

S poklesem teploty kovu silně roste viskozita (klesá tekutost) a klesá tepelný obsah, čili snižuje se doba, po kterou může tavenina vyplňovat formu. Je nutné respektovat pravidlo, že čím je odlitek s tenkými stěnami tvarově složitéjší (velká povrchovost), tím má být vyšší teplota lití.

Materiál formy ovlivňuje zabíhavost:

- Teplota formy.
- Smáčivost formy kovem.
- Přestup tepla na rozhraní forma-kov.
Zvýšení zabíhavostí dosáhneme vyšší teplotou formy. Toho se s výhodou používá při výrobcích přesných odlitků odlévaných do keramických skořepin. Zabíhavost se zhoršuje u forem s vyšší ochlazovacím účinkem tj. hodnotou součinitele tepelné akumulace formy \(b_f \), protože silně ochlazuje taveninu, zvyšuje viskozitu taveniny a může způsobit zatuhnutí čela proudu kovu. Nejobtížněji zabíhá kov do kovových trvalých forem, u kterých zvyšujeme zabíhavost zvýšením teploty formy, zvýšením rychlosti proudění kovu a jeho tlakem. Značný vliv na nezaběhnutí odlitku má druh formy (formovací směs, ochranný nátěr). Důležitým činitelem je hodnota povrchového napětí mezi taveninou a povrchem formy a tzv. úhel smáčení formy kovem. Čím je menší, tím lépe kov ve formě zabíhá. Na podmínky smáčení má vliv tavenina i druh formy nebo její povrchová úprava. Z prvků v tavenině, které snižují smáčivost formy, jsou to např. Al a Cr.

Z technologických vlastností ovlivňuje zabíhavost:

- Odvzdušnění formy.
- Vtoková soustava.
- Počáteční líci rychlost.
- Použití chladítek a zalévaných předmětů ve formě.

Výše líci teploty je omezena možností zvýšení rozpustnosti plynů v tavenině, které mohou při jejich uvolňování během tuhnutí způsobit v odlitcích endogenní bubliny. Při průchodu tekutého kovu formou se zahřívá vzduch, který zvětšuje objem, stejně jako vodní pára a vznikající exogenní plyny. Ty pak svým protitlakem mohou bránit vyplňování dutiny formy kovem, zvláště při malé prodyšnosti nebo nedokonalém odvětrání formy průduchy (výfuky). Přirozeným odvzdušněním jsou otevřené nálitky. U složitějších forem s řadou slepých výstupků je nutné v těchto místech (zpravidla nejvíce vzdálených od vtoků a nálitků) umístit výfuk. Odvzdušnění formy se musí zvlášť pečlivě řešit u kovových forem, které mají nulovou prodyšnost. Tenké a tvarově složité odlitky vyžadují rozvětvenou vtokovou soustavu zaústěnou na více místech do tenkých částí odlitku. U vysokých stěn pro rychlé a rovnoměrné plnění je vhodným řešením stěn spojovacími kanály. Výšší počáteční rychlost kovu podporuje dobré zaběhnutí odlitku, což se využívá u tlakového lití, kde lze odlit velmi tenké stěny (i pod 2 mm).

Nevhodným umístěním podpěrek jader nebo vnitřních (a i vnějších) chladítek ve směru proudu kovu, dochází k snížení teploty formy, a tím k nezaběhnutí odlitku. Přímý vliv na zabíhavost má konstrukce odlitku a formy. Je ovlivňována především:

- Tloušťka stěny odlitku.
- Poloha odlitku ve formě.

Čím tenčí stěny má odlitek, tím kratší musí být doba lití. Je tedy nutné vytvořit formy s velkou sekundovou rychlostí. Horší zabíhavost je také u forem s vysokou povrchovostí, u které kromě tenkých stěn se vyskytují výstupky a žebra, ve kterých je nulová průtočnost kovu. Musíme brát v úvahu, v jaké poloze se bude odlitek odlévat. Tenké části odlitku plněné kovem shora se plní za pomoci gravitace a také účinkem pohybové energie, které působí ve směru zahřívání.
Naopak stěny plněné kovem zdola mají nejhorší podmínky pro zaběhnutí, neboť gravitace působí proti pohybové energii a také na čele proudu se tvoří pevné blány oxidů, které zabraňují dalšímu pohybu taveniny a snižují zabíhavost. Vodorovné stěny se plní jen účinkem pohybové energie a pohyb taveniny se v nich zpomaluje. Proto nejtenčí stěny by měly být plněny shora, větší tloušťku mají mít stěny plněné ve vodorovné poloze a nejtlustší stěny bývají plnění zdola. Při plnění tenké stěny s velkou povrchovostí ve vodorovné poloze je výhodné odlévání na nakloněné rovině v šikmé poloze formy. Současné se s tím podpoří odvod plynů z dutiny formy, sníží se náchylnost ke vzniku bublin (vada č. 414) a u syrových bentonitových forem ke vzniku zálupů (vada č. 221).

K zabránění nezaběhnutí odlitku je tedy nutné uvažovat kompletní působení druhu odlévané slitiny a její vlastnosti, konstrukce odlitku, druh formovací směsi a podmínky lití, včetně konstrukce a průřezu vtokové soustavy.

Nedokonalé vyplnění formy bývá také zaviněno vytečením kovu z formy a nedolitím formy. To je hodnoceno jako vady č. 112 – nedolití a 113 - vytečený kov.

Způsob zjištění vady

Nezaběhnutí odlitku se zjišťuje vizuální kontrolou celistvosti tvaru odlitku, případně rozměrovou kontrolou.

NEDOLITÍ (112)

VYTEČENÝ KOV (113)

Popis a charakteristika vady

Odlitek není úplný, část kovu z následujících důvodů chybí. Buď v odlévací pánvi nebylo potřebné množství tekutého kovu (Nedolití) nebo forma byla síce dostatečně zaplněna tekutým kovem, ale došlo k jeho vytečení v důsledku porušení formy statickým tlakem na dno a prasknutí formy nebo vztlakem, který nadzvedl vršek formy a kov vytekl v dělící rovině. (Vytečený kov). K vytečení kovu může také dojít netesnostmi v dělící rovině nebo ve známkách jader.

Způsob zjištění vady: VK na surovém odlitku
Schéma vady

ŠPATNÁ OPRAVA FORMY (114)

Popis vady

Dutiny na povrchu odlitku, někdy ve velkém rozsahu, které mají stejnou drsnost jako litý povrch zbývajícího odlitku. Plochy a obrysové hrany jsou deformovány v místech špatné opravy formy a při nedodržení tloušťky vrstvy ochranného nátěru formy. Vada vzniká jen při odlévání do pískových forem.

Charakteristika vady

Hlavní příčina vzniku vady je obsažena v samotném názvu. Jsou to špatně opravená nebo neoprávená místa určitým způsobem poškozené formy nebo jde o špatnou opravu formy, např. o taková poškození formy, při kterých se do dutiny formy promáčkne (odmačknutí) určitá část formy. Promáčknutá část formy při tom neodpadne a nevyvolá zadrobení a nárost odlitku. Bezprostředními příčinami poškození formy mohou být:

- nerovnoměrně nanesený nátěr na formy a jádra způsobující různé výčnělky a hrbolky;
- špatná oprava formy, po které na formě zůstane výstupek zmenšující tloušťku stěny odlitku.
- posunutí stěny formy při vytahování modelu vlivem jeho nedostatečného úkosu nebo nevhodného složení formovací směsi, která klade velký odpor při vyjímání modelu z formy [4,5];
- poškození formy při skládání formy, položením spodku na nerovnou podložku nebo nevhodným zatížením vršku či přehnaným stažením obou částí formy.

Vzniku vady můžeme zabránit pečlivou opravou deformovaných míst formy, prohlídkou a úpravou nátěru naneseného na formu nebo jádro a opakovaným složením a rozložením formy, tzv. přiskládáním. Přiskládáním zjišťujeme, zda v některých místech nedochází k odmačknutí nebo k posunutí části formy. Prevenci je použití různých dělících prostředků na model nebo zvýšení úkosů modelů a optimalizace složení formovací směsi s cílem zvýšit její houževnatost a plasticitu tak, aby se snížil sklon formy k poškození při jejím oddělení od modelu, jak popsali Hofman, Levelink, Elbel [4,5,6].

Způsob zjištění vady: VP na surovém nebo hrubém odlitku
Popis vad 115, 116, 117

Změny tvaru a rozměrů odlitku způsobené jejich mechanickým poškozením, které se projevuje náhlým porušením obrysu odlitku (různými prohlubněmi na povrchu, potlučenými („smetenými“) hranami, ohnutými žebry, deformací tenkých stěn ap.).

Vada vzniká po ztlustnutí odlitku při jeho vytloukání z formy, při transportu odlitků, při čistírenských operacích, při rovnání odlitků a při jejich konečné úpravě a expedici. Není to jen vzhledová vada, protože pohmoždění často zasahuje pod přídavek na obrábění. Bezprostředními příčinami vzniku vady je nedodržení technologické kázně předčasným vytahováním odlitku z formy, zejména pokud odlitky dopadají na vytřásací rošt nebo jsou odhazovány z velké výšky na podlahu nebo do přepravní bedny. Při další manipulaci s odlitky se s nimi zachází nešetrně, což platí i o čistění odlitků, dochází k nárazům při dopravě aj. Vada 117 je způsobena chybami dělníků při odstraňování nálitků řezáním, pálením kyslíko-acetylenovými hořáky a při broušení odlitků.

Způsob zjištění vady: VK povrchu odlitku a měření hloubky dutin a poškozených míst.
7.2 Skupina vad: CHYBĚJÍCÍ ČÁST ODLITKU S LOMEM (120)

ULOMENÁ ČÁST ODLITKU ZA TEPLA (121) ULOMENÁ ČÁST ODLITKU ZA STUDENA (122)

Schéma vady

Popis vady

Chybí část odlitku, která byla odlomena. Pokud došlo k ulomení odlitku za studena, je lom čistý, zrnitý; u lomu za tepla je zoxidovaný.

Charakteristika vady

K porušení celistvosti odlitku dochází mechanickým poškozením odlitku během výrobních operací: vyjímání odlitku z formy, při manipulaci s odlitky, jejich čistění a při dopravě. K ulomení části odlitku za tepla dochází při předčasném vyjímání odlitku z formy za vysokých teplot odlitku nebo dokonce, když kov ještě neztuhl po celém průřezu.

Způsob zjištění vady: VK povrchu odlitku.

VYŠTÍPNUTÍ (121)

Schéma vady

Vzhled vady

Porušení tvaru nebo rozměru odlitku v místě, kde byly k němu napojeny zářezy, nálitky a výfuky. Projevuje se nepravidelným lomem, který zasahuje dovnitř odlitku. Povrch lomové plochy bývá zrnitý a může být i zoxidován.

Popis a příčiny vzniku vady

Základní příčinou je mechanické poškození odlitku při nedbalém odstraňování zářezů, výfuků a nálitek. Důvodem také může být skutečnost, že tyto části surového odlitku jsou
předimenzovány nebo že průřez je v místě napojení na odlitek příliš velký v porovnání s tloušťkou stěny odlitku. Při vyjímání odlítků ze slitin železa z formy za červeného žáru dochází k samovolnému odlomení náлитku, výfuku nebo vtoku a vyštípnutí odlitku při manipulaci se surovým odlitkem na vytloukacím roštu nebo po jeho vytážení z kovové formy.

Jako u všech vad způsobených mechanickým poškozením odlitku je i v tomto případě nutná pečlivá a opatrná práce a dodržování technologické kázně. Rovněž se musí zabránit vyjímání odlítků z formy při vysokých teplotách. Plešinger [7] formuloval tato doporučení k prevenci:

- Napojit zářez při ponechání jeho původního průřezu v jiném místě odlitku;
- je-li to možné, zmenšit plochu zářezu;
- ponechat původní průřez zářezu, avšak vytvořit na něm vrub tak, aby jeho tloušťka byla značně menší, než tloušťka stěny odlitku v místě napojení zářezu;
- u nálitků můžeme usnadnit jeho ulomení mimo odlitek použitím podnálitkové vložky;
- v některých případech se dá zabránit vyštípnutí tím, že před urážením příslušné části surového odlitku, vtoku ap., průřez předem nařízneme nebo zabrousíme a zmenšíme tím lomovou plochu.

Způsob zjištění vady: VK povrchu surového nebo hrubého odlitku a měření hloubky poškozených míst.

7.3 Skupina vad: NEDODRŽENÍ ROZMĚRŮ, NESPRÁVNÝ TVAR (130)

ŠPATNÝ MODEL (131)

Schéma vady

Popis vady

Tvar odlitku úplně nebo částečně neodpovídá výkresu, což platí i o modelovém zařízení. Název vady je současně příčinou nedodržení rozměrů a nesprávného tvaru odlitku.
Charakteristika vady

- Chyba postupového výkresu odlitku.
- Chyba ve výrobě modelu, před použitím modelu ve slévárně nebyla provedena jeho kontrola.
- Došlo k záměně nebo natočení volných dílů, které nebyly vhodně zajištěny a označeny.

Odstranění výše uvedených chyb je prevencí proti vzniku vady.

Způsob zjištění vady: RK

PŘESAzení (132)

Schéma vady

![Schéma vady](image)

Popis vady

Posunutí jedné části tvaru odlitku proti druhé v dělících plochách, též přesazení dutiny nebo otvorů proti povrchovému obrysu odlitku. Přilehlé rozměrové odchylky jsou stejné, ale opačného směru. Jedna i druhá část odlitku vzhledem k rovině dělení má správný tvar. Úchylky povolené pro přesazení odlitku společně s ostatními úchylkami přesahly meze stanovené příslušnými stupni přesnosti příslušné normy nebo výkresové dokumentace. [8, 9]

Charakteristika vady

Vznik vady lze charakterizovat čtyřmi vlivy:

- Poškození nebo vady modelového zřízení.
- Špatný stav formovacích rámů a modelových desek.
- Chyby při skládání formy, špatná funkce skládacího stroje.
- Nedodržení technologického postupu výroby formy.

Nejčastější příčinou jsou nedostatky na modelovém zařízení a formovacích rámcech. Patří sem nedostatečně zajištění různých částí modelu proti posunutí, deformace formovacích rámů, nepřesné formovací rámy a velká vůle zaváděcích kolíků v otvorech, špatně zvolená vůle modelů, známek forem a jader, kokil, uložení na modelových deskách ap. [10]. K přesazení může dojít nedbalým skládáním forem, při manipulaci s formou, při otočení vršku nebo spodku formy, posunutím části formy nárazem.

Výpočet vzdálenosti dutiny formy od levé strany do osy středního otvoru
\[A_1 = A_1 + A_2 + A_3 - N_1; \]
pak velikost přesazení \[N_1 = \frac{A_1 + A_2 + A_3 - A_4}{4} \] Mezera mezi známkami jádra a formy \[N_2 = B_1 + B_2 + B_3 - B_4 - B_5 - B_6 \] kde \[B_1, B_3 \] jsou tloušťky stěn odlitku; \[B_2 \] šířka jádra; \[B_5 \] šířka známky jádra. Tloušťka stěny odlitku dle výkresu je \[S \] pak \[B_3 = S + N_2 \] a \[B_1 = S - N_2 \]. Nestejnoměrnost tloušťky stěn se vypočte ze vztahu:
\[B_3 - B_1 = (S + N_2) - (S - N_2) = 2N_2 \]

Při výrobě forem na poloautomatických nebo automatických formovacích linkách pomocí dělených modelů je přesazení častou vadou, která souvisí s problémem skládání obou polovic formy a přesného zakládání jader. Nepřesné složení formy v tomto případě znehodnocuje výhodu tohoto výrobního postupu, který umožňuje přesně reprodukovat rozměry modelu. Při obvyklém způsobu skládání forem se zavádí čepy (kolíky) do pouzder formovacích rámů. Použitelnost tohoto způsobu je podmíněna minimální rozměrovou vůlí mezi kolíkem a pouzdrem tak, aby se dal kolík do pouzdra zasunout. Vůle bývá zpravidla 0,25 mm a v průběhu provozu se opotřebení zvětšuje na tolerovaných 0,4 mm. Sčítáním vůlí během výroby se při skládání formy získá přesazení až 1,5 mm i v případech, kdy tolerance jsou ve výše uvedeném rozmezí. Někdy při zanedbání péče o otvory v rámech a o zaváděcí kolík na modelových deskách se dosáhne přesazení ještě vyšší. Existence vůlí mezi pouzdrem a čepem nedovoluje např. spolehlivou výrobu odlitků s malými tloušťkami stěn. Uvedené nevýhody odstraňuje např. nový způsob skládání na tříbodovém principu [12] nebo použití francouzských kolíků.

Vzniku přesazení lze předcházet především pečlivou údržbou a kontrolou modelového zařízení. Je rovněž třeba udržovat v bezvadném stavu formovací rámů, zejména zaváděcí otvory. Velká pozornost se musí věnovat kvalitě zaváděcích kolíků, které musí odolávat opotřebení, musí mít zaručenou kolmost vzhledem k modelové desce. Při velkostírové výrobě na moderních linkách se doporučuje použít zaváděcí kolíky z cementační oceli 14220 s tolerancí F8/H7. Jako u jiných vad je i zde důležité dodržování technologické kázně při

Způsob zjištění vady: VK na surovém odlitku nebo na hrubém odlitku + RK, šablony nebo jiné přípravky.

NEDODRŽENÍ ROZMĚRŮ (133)

Schéma vady

![Schéma vady]

Popis vady

Zmenšení nebo zvětšení rozměrů odlitku proti údajům na výkrese, překročením dovolených úchylek podle příslušných norem nebo sjednaných technických podmínek [8].

Příčiny vzniku vady

Atlas vad CIATF [13] uvádí ve skupině nevyhovujících rozměrů sedm druhů závad, které vyplývají z různých příčin vzniku neshody. Jsou to:

- chyby ve stanovení smrštění,
- brzděné smršťování,
- nepravidelné smršťování,
- přílišné rozklepání modelu pro jeho uvolnění před vyjímáním z formy,
- nerovnoměrné a nedostatečné upěchování formy,
- dilatace formy nebo jádra při sušení,
- deformovaná modelová deska nebo model,
- nepřesné nebo nesprávné složení formy,
- působení vztálu na strop formy a na pravá jádra zejména při jejich horizontálním uložení ve známkách [10].

Pro většinu z výše uvedených příčin je nejúčinnějším způsobem k odstranění vady úpravou modelu podle reálného smrštění odlitku nebo s ohledem na dilatace formy a jádra.
Prevencí vady je pečlivá práce při zpracování výrobních postupů, při výrobě forem a jader, při vyjímání modelu z formy a při skládání forem.

Způsob zjištění vady: RK

ZBORCENÍ, DEFORMACE (134)

Schéma vady

![Schéma vady](image)

Popis vady

Změna tvaru a rozměru odlítku oproti výkresu překročením dovolených odchylek podle příslušných norem nebo sjednaných technických podmínek, způsobené deformací modelu, formy a odlítku během výroby formy, jejího transportu, při chladnutí a tepelném zpracování odlítku. [10].

Charakteristika vady

Příčiny zborencí a deformace odlítku jsou [10]:

- deformace modelu při jeho skladování, manipulaci a během formování, (případ a)
- deformace formy/jádra při jejich ukládání na nerovnou podložku, (případ b)
- vznik smršťovacího a zbytkového vnitřního pnutí v odlítku při jeho chladnutí po ztuhnutí, (případ c)
- uvolnění vnitřního pnutí během skladování odlítku, při jeho hrubování a tepelném zpracování, (případ c)
- expanzní růst formovací směsi s křemenným ostřivem během tuhnutí odlítku, vyvolávající trvalé objemové změny při přeměně křemene na cristobalit (případ d).

Tepelné a mechanické borcení odlítku

Tento jev teoreticky objasnil Přibyl [16]. Uvádí, že otázka tepelného borcení se jeví naléhavěji u litinových odlítků než u odlítků ocelových. Ocelové odlítky se vždy tepelně zpracovávají, přičemž konečnou operací tepelného zpracování je žíhání na odstranění zbytkových pnutí (často ve spojení s popouštěním).
Odlitky ze šedé litiny se běžně tepelně nezpracovávají, takže v nich zůstává zbytkové nýtžní v celé své hodnotě. To se může projevit při obrábění zborcením odlitku. V litém stavu se bortí jen odlitek neizotermické poddajné nebo polopoddajné konstrukce. Typickým příkladem převážně tepelného zborcení je borcení neizotermického lože soustruhu. Některé odlitky se bortí současně i mechanicky. Mechanickým borcením se rozumí změna tvaru odlitku účinkem exogenného nýtžní. Mechanicky se mohou bortit odlitky různého tvaru, zejména tenkostěnné odlitky, a to i při stejnoměrné tloušťce stěn. V takovém případě nejde o deformace pružné nýtžní plastické, trvalé. Nezmění se proto dodatečným odstraněním nýtžní z odlitku.

Rozměrové změny odlitku způsobené cristobalitickou expanzí jader [14,15]

U dutých odlitků nejrůznějších tvarů jsou dutiny předlévány pomocí pískových jader s křemenným ostřivem. Protože jádra jsou během lití a tuhnutí silně tepelně namáhána, prohřeje se křemenný písek, u zvlášť exponovaných jáder, na teplotu nad 1000 °C ještě během tuhnutí odlitku. Bylo zjištěno, že při teplotách kolem 1000 °C dochází k u křemenných písků ve směsích s vodním sklem [14], k přechodu β-křemene na cristobalit, která je doprovázena expanzním růstem o 15,7 objemových procent. Když cristobalitická expanze proběhne ještě během tuhnutí dutého odlitku, projeví se expanzní růst jádra trvalou deformací povrchu odlitku a zaslabením tloušťky stěny. Deformace jader projevující se trvalou deformací stěny odlitku závisí na tepelném namáhání jáder, které je vyjádřeno poměrem relativní tloušťky odlitku k relativní tloušťce jádra a na složení jádrové směsi. Aby cristobalit vznikl v poměrně krátkých dobách tuhnutí odlitku, musí formovací směs obsahovat dostatečné množství mineralizátorů, kterými jsou hlavně kationty Na, K. V citovaných pracích [14,15] bylo prokázáno, že směsi s vodním sklem i organickými pryskyřicemi jako pojivy, obsahují dostatečné množství draselných a sodných iontů.

Zborcení způsobené deformací dřevěného modelu se dá předejít použitím kvalitního materiálu na modely, jejich skladováním při konstantní teplotě a vlhkosti, pečlivým ukládáním modelu do skladu i na formovací stroj nebo na formovnu a konečně kvalitními nátěry, které budou zabraňovat pronikání vlhkosti do modelu během formování.

Zborcení způsobené deformací formy se předchází použitím tuhých formovacích rámů, ukládáním forem na rovnou podložku, provedením takových známek jáder, aby přispívaly k tuhosti formy, předvídaním prohnutí formy a patřičným stažením forem, případně změnou formovacího materiálu.

Při tepelném borcení odlitku lze použít řízené ochlazování odlitků a dodatečné opatření proti borcení, mezi která patří zahřávání na odstranění nýtžní nebo oprava tvaru pomocí oheňu a rovnání. Mechanické borcení lze omezovat vhodným zpoddajním formy nebo jader. Pokud dojde k deformacím v plastickém stavu je naopak vhodným opatřením tuhá, nepoddajná forma. Dobrým ochranným opatřením proti oběma druhům deformací je příliš příčky u tenkostěnných skříňovitých odlitků. Příčka se stává trvalou součástí odlitku až do jeho dohotovení. Často se zborcení řeší "falešným" zakřivením odlitku, které se stanoví podle předpokládaného expanzního růstu jádrové směsi [15]. Odstranění nepříznivých důsledků cristobalitické expanze je možné záměnou křemenného ostřiva. Také můžeme přidat

7.4 Skupina vad: NEDODRŽENÍ HMOTNOSTI ODLITKU (140)

Schéma vady

![Schéma vady](image)

Popis vady (neshody)

Odchylky od směrně hrubé hmotnosti odlitku překročením povolených odchylek podle příslušných norem nebo sjednaných technických podmínek s odběratelem.

Charakteristika vady

Nedodržení hmotnosti odlitku přímo souvisí s nedodržením rozměrů odlitku s vadami 131 - Špatný model a 133 - Nevyhovující rozměry a všechny příčiny, které je způsobují, zároveň ovlivňují i odchylky hmotnosti. Vady třídy 400 - Dutiny mohou také při velkém rozsahu snižovat hmotnost odlitku.

Způsob zjištění vady: Vážením jednoho odlitku nebo několika kusů a stanovením průměrné hmotnosti.

7.5 Literatura

[4] HOFMANN, F., SATMER, F.: Giesserei, 68, 1981, h. 4, s. 81 - 85.4

Σ

Shrnutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

❓

Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
8 TŘÍDA VAD 200: VADY POVRCHU

Členění kapitoly

✓ Skupina vad: PŘIPEČENINY (210)
✓ Skupina vad:: ZÁLUPY (220)
✓ Skupina vad: NÁROSTY (230)
✓ Skupina vad: VÝRONKY (240)
✓ Skupina vad: VÝPOTKY (250)
✓ Skupina vad: ZATEKLINY (260)
✓ Skupina vad: NEPRAVIDELNOSTI POVRCHU ODLITKU (270)
✓ Skupina vad: VADY POVRCHOVÉ OCHRANY ODLITKU (280)
✓ Literatura

Čas ke studiu: individuální

Cíl

Po prostudování této kapitoly budete umět

• Charakterizovat vady ze skupiny Připečeniny
• Charakterizovat vady ze skupiny Zálupy
• Charakterizovat vady ze skupiny Nárosty

Výklad

Povrchové vady jsou tedy klasifikovány velmi podrobně, i když z hlediska množství zmetků představují jen 10 až 11 % vad. Mnohé z nich jsou vady opravitelné, avšak opravy jsou časově náročné a velmi nákladné. Kromě 4 vad se jedná o vady týkající se odlévání do pískových forem, odlitky vyrobené v kovových formách mají lepší povrchy a také vyšší přesnost. Nároky odběratelů na hladkost a čistotu povrchu odlitku se stále zvyšují a tomu se musí přizpůsobovat slévárenská technologie i management kvality sléváren.

Z těchto důvodů bylo do této třídy zařazeno nejvíce vad. Je zde 8 skupin s 23 vadami. Často to jsou jen vady vzhledu odlitku, které neovlivňují životnost součásti a záleží na odběratel, zda je ochoten je tolerovat a v jakém rozsahu. Převážná část vad z této třídy představuje určité výstupky a nárosty na povrchu odlitku. Proto sem byly také zařazeny Zatekliny, které v normě ČSN 4212 40 patří do první skupiny, naopak nejsou zde Zavaleniny, které sice jsou vzhledovou vadou na povrchu odlitku, ale současně porušují souvislost odlitku...
a ve shodě s atlasem vad CIATF byly přeřazeny do třídy 300. Rozsáhlou skupinu tvoří nepravidelnosti povrchu odlítku (270). Bylo sem zařazeno 7 vad různého původu, z toho 3 vady charakteristické pro přesné lití.

8.1 Skupina vad: PŘIPEČENINY (210)

DRSNÝ POVRCH (211)

Schéma vady:

![Schéma vady: DRSNÝ POVRCH (211)](image)

POVRCHOVÉ PŘIPEČENINY (212)

Schéma vady:

![Schéma vady: POVRCHOVÉ PŘIPEČENINY (212)](image)

Popis vady:

Rozdíl mezi drsností povrchu (211) a povrchovou připečeninou (212) je dán tím, že drsný povrch vzniká tak, že tekutý kov kopíruje povrch odlítku bez vzájemných reakcí a kov neproniká mezi zrna ostrůva hlouběji než do poloviny jejich průměru. Zbytky formovacího materiálu se snadno oddělují, povrch se stává pouze drsným. Dojde-li k fyzikálně-chemickým reakcím na rozhraní forma-kiv a penetraci hlouběji do formy, vznikají povrchové připečeniny, často velmi obtížně oddělitelné od povrchu. Zvýšená adheze k povrchu odlítku je způsobena fyzikálně-chemickými reakcemi a vznikem víceméně silikátových soustav.

Charakteristika vady:

Tekutý kov kopíruje tvar a povrch slévárenské formy. Velkou zabíhavost mají zejména grafitizující slitiny Fe (např. šedá a tvárná litina) a detailně kopírují nerovnosti povrchu formy. Vadám můžeme předcházet volbou nízké licí teploty kovu. Z hlediska pískové formy omezíme drsnost povrchu lepším zhuštěním formy, použitím ochranného nátěru a snížením velikosti ostrůva. Lepší povrchovou jakost dosáhnete u formovacích směsí s vyšším ochlazovacím účinkem charakterizovaným součinitelkou tepelné akumulace formy bj. U grafitických slitin železa zlepšují povrchovou jakost uhlíkaté příslušného směsi v množství 0,4 – 0,6 % lesklého uhlíku ve směsi.

HLUBOKÉ PŘIPEČENINY - ZAPEČENINY (213)

Schéma vady:

![Schéma vady: HLUBOKÉ PŘIPEČENINY - ZAPEČENINY (213)](image)
Popis vady:

Je to vada typická pro masivní odlitky z oceli a litin. Kov proniká (penetruje) do značné hloubky ve formě, často několik centimetrů i více. Zapečenina (penetrace) se projevuje zejména v tepelně exponovaných místech formy nebo jádra. Vzniká kovo-keramický konglomerát velmi obtížně odstranitelný od povrchu odlitku.

Charakteristika vady:

V současné době existují ověřené mechanismy penetrace kovu (Jelínek, Rusín [1]; Neudert [2]):

- Penetrace přes tekutou fázi.
- Penetrace za spoluúčasti par kovu.
- Penetrace za spoluúčasti chemických reakcí.
- Penetrace iniciovaná výronky kovu vlivem cristobalitické expanze ve formě/jádru.
- Penetrace expanzi vodní páry.
- Penetrace vycezováním.

Jelínek [20] konstatoval, že rozechodující vliv u litinových odlitků s lupínkovým (LLG) a kuličkovým (LKG) gráfitem má mechanická penetrace, podpořená expanzí litiny při tuhnutí. Značný význam má i charakteru plynné atmosféry formy. U odlitků z LKG dochází k degradaci gráfitu vlivem oxidace a k vyvázáni modifikačních přísad (MgO, MgS). Litina pak penetruje jako LG. Dochází také k oduhličení kovové matrice.

Způsob zjišťování vady skupiny 210: VK na hrubém odlitku
8.2 Skupina vad:: ZÁLUPY (220)

ZÁLUP NA VRŠKU FORMY (221) ZÁLUP NA DNĚ FORMY (222)

Schéma vady

Mělké prohlubně otevřené nebo překryté vrstvičkou kovu, které mohou být vyplněny formovacím materiálem. Tato vrstva pak vystupuje nad povrch odlitku a může se jevit jako nárost. Tvoří se oddělením licní části formy, jako důsledek působení sálavého tepla kovu na horní plochy [1,7].

ZÁLUPOVÉ SÍŤOVÍ (223)

Schéma vady

Velmi tenké, jemné a rozvětvené nárosty, často se i překrývající ("krycí ocásky"), kombinované se zvrásněním povrchu. Jejich napojení na povrch odlitku je velmi jemné, takže se někdy dá celé síťoví snadno odstranit. Pod nárosty se mohou objevit zbytky formovací směsi. Vada vzniká převážně na dně formy [8].

Charakteristika vad - Zálupy

Zálupy jsou povrchovou vadou odlitků, zpravidla odlévaných do syrových bentonitových forem. Patří mezi vady z napětí, tzn., že hlavní příčinou je napětí z brzděné tepelné dilatace formy. Na vznik vady má vliv celá řada faktorů [9]:

- Tepelná dilatace formy a napětí z brzděné dilatace.
- Vznik kondenzační zóny vody ve formě a s tím spojené snížení mechanických vlastností v převlhčené vrstvě.
- Odpařovací tlak vodní páry.
- Smrštění dehydroxilovaných jílů.
- Tlak plynů a další.

Rozsáhlý výzkum a dlouholetá praxe sléváren potvrdily, že k rozhodujícím faktorům patří první dva, napětí a pevnost v kondenzační zóně. Zálupům můžeme předcházet [1,10]:

A. Ovlivnění tlakového napětí z brzděné tepelné dilatace.
- Volbou tvaru zrn křemenného písku. Hranatá zrna vyvolávají nižší napětí než kulatá.
- Volbou granulometrické skladyby. Monofrakční písky způsobují vyšší napětí, než písky s plochou křivkou zrnitosti. Hrubozrnné písky mají nižší sklon ke vzniku napětí než jemnozrnné.
- S rostoucím stupněm zhuštění formy roste sklon k zálupům. U rovných ploch je vhodné předformovat dilatační spáry.
- Záměnou křemenného ostřiva jiným, např. zirkonovými písky, korundem, magnezitem, atd. se spojitou lineární tepelnou dilatací (bez modifikačních přeměn).
- Deskovité odlitky odlévat v šikmé poloze, aby hladina kovu nebyla rovnoběžná s vrstvou formovací směsi ve formě a tudíž nesálala intenzivně na celou plochu najednou.
- Použití přísad organického původu, umožňujících při tepelné expozici vyšší stupeň volnosti mikrodilatace zrn (rašelina, umělé hmoty, dřevěné piliny aj.), a to buď zplyněním, nebo přechodem přes plastický stav (kamenouhelná moučka).
- Používání ochranných nátěrů světlé barvy, zpomalujících rozvoj napětí a prodlužujících kritickou dobu do vzniku zálupů (náhrada grafitových nátěrů zirkonovými, nátěry na bázi Al prášku aj.).

B. Zvýšení pevnosti bentonitových směsí v zóně kondenzační vody.
- Zvýšení obsahu bentonitu ve směsi.
- Nattrifikace vápenaté - hořčnatých nebo železitých bentonitů.
- S růstem velikosti zrn za současného poklesu hranatosti roste pevnost v kondenzační zóně.

Některé závěry působí protichůdně, nutno volit kompromis. Existuje i řada ryze technologických úprav formy, které mají zabránit vzniku zálupů např. tzv. "hřebíkování" lice formy pískováčky.

Způsob zjištění vady: VK
8.3 Skupina vad: NÁROSTY (230)

Všechny vady této skupiny jsou nazvány podle příčiny svého vzniku. Jsou to výstupy, hrbolky na povrchu odlitku – nárosty, které jsou v mnoha případech doprovázeny vadami z třídy 500 Zadrobeninami a Rozplaveným pískem. Ve většině případů jsou nárosty opravitelnou vadou, avšak pracnost oprav je značná.

VYBOULENINY (231)

Schéma vady:

Popis vady

Nepravidelné místní deformace odlitku - vyboulení, způsobené namožením formy (jádra). Rozlišujeme dva zásadní typy vyboulenín:

- Vybouleniny pravidelně rozložené po výšce odlitku, přesně odpovídající tloušťce spěchované vrstvy směsi (tzv. "roleta").
- Vybouleniny místní, rozsáhlé, přesahující svým rozměrem i několik spěchovaných vrstev, tvořící se ve spodní masivní části odlitku, v místech maximálních tlaků kovu.

Charakteristika vady

Mechanismus vzniku obou typů vyboulenín má své odlišnosti. Musíme rozeznávat vznik vyboulenín odlitků a namoženín sušených nebo samotvrdnoucích forem, např. při lití těžkých, masivních odlitků do šamotových směsí a vznik téže vady při lití do syrových forem [10]. Namožení u sušených forem vzniká překonáním únosnosti stěn za vysokých teplot zpravidla v místech maximálních metalostatických tlaků.

U syrových forem jsou vady způsobeny nízkou pevností formy v tlaku za studena i za zvýšených teplot vlivem kondenzační zóny vody. Vím, že u syrových forem s obsahem volně vody od 3,5 do 4,5 % se působením sálavého tepla vznikne při koncentracích kondenzační hladiny vody, pásmo pod povrchem formy, ohraničené plochou odpařování a plochou kondenzační zóny (100 °C), kde koncentrace vlhkosti dosahuje přibližně 3 - 3,5 násobku výchozí vlhkosti. Toto převlhčené pásmo má velmi nízká mechanické vlastnosti, klesá pevnost v tahu, střihu, i v tlaku. Na počátku a při krátkém působení tepla (drobné odlitky) má kondenzační zóna jen minimální tloušťku (několik mm), avšak u masivnějších, větších odlitků s delší dobou lití, do vytvoření již samonosné pevné licí kůry odlitku, dosahuje zóna tloušťky několik cm. Takto při nízkém stupni zhušťení se projeví vysokou stlačitelností a plasticitou. Při lití odlitků s vyšším metalostatickým tlakem pak dochází ke vzniku vyboulenin.

Vadě zabránime použitím natriifikovaných bentonitů, vyšším obsahem pojiva a tvrdým a rovnoměrným upěchováním formy
Třída vad 200: Vady povrchu

Způsob zjištěná vady: VK

ODŘENÍ, SHRNUŤÍ (232)

Popis vady

Nepravidelný nárost na vertikálních plochách nebo oblinách odlišku ve směru skládání formy nebo zakládání jádra. Obyčejně se nachází v několika místech odlišku v kombinaci se zadrobeninami.

Charakteristika vady

Jde o mechanické poškození formy nebo jádra, vzniklé nepřesným skládáním formy. Vada se častěji vyskytuje u forem se složitou dělící rovinou tam, kde části formy značně převyšují nad úrovní dělící roviny. Souvisí se vznikem vady č. 132 - Přesazení. Při ručním skládání forem, pokud jsou formovací rámy deformovány a když opotřebení zaváděcích kolíků a zaváděcích otvorů je značné, dojde buď k posunutí vršku proti spodku formy ve směru vertikálním, nebo k porušení rovnoběžnosti dělících rovin.

Způsob zjištěná vady: VK

UTRŽENÍ, SESUTÍ (233)

Schéma vady
Popis vady

Nepravidelný nárost na povrchu odlitku, který má tvar utržení části formy při jejím oddělování od modelu nebo po samovolném sesutí části formy před odlitím. Na horních plochách se současně objevují zadrobeniny.

Přičiny vzniku vady

Hlavní příčina utržení části formy před litím je nízká pevnost v tahu použité formovací směsi. Vada je častá u syrových bentonitových směsí a zvláště při použití jednotných bentonitových směsí. Oběhem směsi a při nedostatečné kontrole dochází ke snížování jejich mechanických vlastností. Nastává desaktivace - umrtvování bentonitu, např. působením zplodin rozkladu uhlikatých látek nebo sorpcí destilujících látek z jader, ke vzniku mikrotřhlin v pojivových bentonitových mostech při pěchování atd.

Technologických vlivů se uplatňuje zvýšená adhese směsi k modelu při nevyhovující kvalitě povrchu a špatných úkosech. Dále lze k těmto vlivům přiřadit i otřesy při skládání rámů a transportu formy. Na odlitku se objevuje nárost často ve spojení se zadrobeninou. Velmi nízká pevnost formy může přivodit i sesutí její části.

Způsob zjištění vady: VK

Schéma vady

Popis vady

Nepravidelný nárost v blízkosti vtoku nebo ve spodních částech formy ve směru proudění kovu. Často obsahuje zadrobeniny a na horních plochách pozorujeme také rozplavený písek. Erozi slévárenské formy se rozumí porušení formy nebo jader během lité a plnění dutiny formy vlivem proudícího kovu.

Charakteristika vady [1,7]

K hlavním vlivům způsobujícím porušení patří:
- mechanické porušení,
- tepelné rozrušení (degradace) pojivové soustavy,
- fyzikálně-chemické porušení.

Mechanické porušení je možno definovat jako přímý důsledek omývání formovacího materiálu tekutým kovem. Kov naráží na formu, zvyšuje její teplotu (šokový ohřev), pojivo se rozruší, kov vniká do mezer, které se objevují mezi zrní a zrna vyplaví. Z komplexního pohledu nastává eroze již v licí jamec a ve svislém licím kanále vtokové soustavy. Vířivé licí jamky znamenají zvýšenou erozi. V licím kůlu dochází k volnému pádu kovu, což může být přirovnáno k přímému lití kovu bez vtokové soustavy přes náletek.
S rostoucí výškou pádu kovu roste energie dopadajícího proudu a přímo úměrně s tím roste i eroze formy. Značný erozní účinek padajícího kovu je zmiňován buď nakloněnými kanálky, pomalým litím s postupněm zalpením kanálu v závislosti na stoupající hladině v dutině formy nebo opatřením míst dopadu kovu buď dopadovou jamkou, nebo odolným žáruvzdorným materiálem. Velmi účinné je vkládání keramických filtrů do vtokové soustavy [11,12].

Vír je další velmi nebezpečný zdroj eroze. Má největší účinek při svém vzniku. Jakmile se hladina ve formě zvýší, vír přestane mít strhující účinek. Proto by vtoková soustava měla z pohledu eroze být podtlaková (nízká vtoková rychlost) s laminárním prouděním. U masivních odlitků s dlouhou dobou lití používáme šamotových tvárení pro sestavení vtokové soustavy s vysokou odolností proti erozi.

Vedle mechanického působení tekutého kovu je celý mechanizmus vázán na vlastnosti formy; druh ostřiva (zmítnost, smačivost tekutým kovem), stupeň zhuštění formy (povrchová tvrdost, pevnost za studena a za vysokých teplot), druh a množství pojiva.

Za stejných podmínek největší erozi zjišťujeme u lití oceli, pak u litin a nejnižší u hliníkových slitin (v pořadí teplotního proudění a hustoty slitiny).

Fyzikálně-chemické porušení k němu dochází tehdy, jestliže souběžně s mechanickým porušením dojde na rozhraní písek - kov k chemické reakci. Tyto vzájemné reakce jsou ovlivněny interakcí forma - kov, přičemž odlévaný materiál může působit buď přímou, nebo svými oxidy a struskou, které jej doprovází.

Způsob zjišťování vady: VK

8.4 Skupina vad: VÝRONKY 240)

Schéma vady
Popis vady

Výronky jsou vystouplé žebroví nebo žilkové síťoví výrostků na povrchu odlitku, které vzniká tím, že kov zatéká do trhlinek („výron”), tvořících se dilatací formovacího materiálu. Vyskytují se především na válcových plochách a zaoblených hranách jader (forem). Jsou to vady opravitelné, často se odstraní při tepelném zpracování odlitku jako okuje.

Charakteristika vady

Výronky jsou typickou vadou povrchu způsobenou napětím. Vyskytují se především u odlitků ze slitin s vysokou zabíhavostí (grafitizující slitiny, některé neželezné kovy), které jsou odlévány do forem a jader pojených umělými pryskyřicemi (Cold-Box, Hot-Box). Při lití se vytvoří trhlinky nebo síťoví trhlinek v místech zaoblení povrchu, do kterých zateče kov. Výronky jsou velmi jemné a snadno se oddělují od povrchu odlitku.

U ocelových odlitků je výskyt této vady v daleko menší míře. Praskne-li líc jádra opatřený nátěrem nebo námazem, vzniká místo pro hloubší penetraci kovu a v místech výronků se vytvoří zapečenina (v rozích a hranách tepelně exponovaných jader), často s dobrou oddělitelností od povrchu odlitku.

Pro mechanismus vzniku této vady existuje celá řada teorií, většina však vychází z tepelného pnutí křemenných forem, a to především proto, že jiná nekřemenná ostřiva (zirkonsilikát, korund, magnezit) ve směsích s umělými pryskyřicemi výronky netvoří. Z analýzy procesu vzniku výronků vyplývá, že pevnost v tlaku směsí s pryskyřicemi je 4 - 5krát vyšší, než pevnost v tahu. Proto jsou pro tyto směsí nebezpečná všechna tahová pnutí. Je možný i druhý mechanismus, analogický vzniku zálupů, kdy tepelné pnutí v povrchové vrstvě vyvolá kombinovaná napětí v tahu a ohybu, a povrchová kůrka jádra rozpraská. Směsí s umělými pryskyřicemi mají vysokou pevnost za studena, která se náhle snižuje v úzkém intervalu teplot termodestrukce pryskyřice a bez plastického stavu se při ohřevu zhroutí. Záměna křemenného ostřiva za nekřemenné vede vedle snížení napětí také i ke zvýšení teploty termodestrukce. Odolnost proti záplavám jsou souvisí i s charakterem destrukce pojiva. Ta se zvyšuje s rostoucím obsahem pojiva ve směsí, tzn. s tloušťkou pojivových mostů a snižuje se s obsahem málo stabilních organických katalyzátorů. U jader pro ocelové odlitky s vysokým tepelným namáháním, vyrobených z čistých křemenných písků a v přítomnosti mineralizátorů (např. iontů K, Na z vodního sklá, alkalických resolů, alkalických katalyzátorů pryskyřic) se účinek napětí bude zvyšovat i s možností vzniku cristobalitu.

K nejpoužívanějším prostředkům k předcházení vzniku výronků patří oxidy železa, ať už v prášku (Fepren, mleté okuje), tak i v zrnutém stavu (okuje, železná ruda) [14]. Jejich účinek se vysvětluje zvyšováním tepelného vodivosti směsi, vznikem nízkotemperaturních křemicičitanů (fayalitu) apod. Je průkazný jejich účinek na zvýšení pevnosti za vysokých teplot. Např. u samotvrzdnoucí furanové směsi roste příznadu práškových oxidů železa teplota zhroucení směsi o 120 °C a potlačuje se výrazně vznik výronků. Oxidy mezi zrně vytváří za vysokých teplot křemicičitanové mosty zvyšující pevnost směsi, i když pryskyřice dávno vyhořela. S jemností oxidů železa roste jejích účinnost, ale výrazně se snižují pevnostní charakteristiky vytvrzené směsi.

Způsob zjišťování vady: VK
8.5 **Skupina vad: VÝPOTKY (250)**

Schéma vady

![Diagram](image)

Popis vady

Kapky nebo vrstvy s hladkým povrchem o průměru až 12 mm a o složení odlišném od základní slitiny, obsahující její nízkotavitelné složky. Vada vzniká nejčastěji u slitin neželezných kovů, u slitin železa se vyskytuje u slitin s obsahem P nad 0,15 %.

Charakteristika vady

Způsob zjišťování vady: VK

8.6 **Skupina vad: ZATEKLINY (260)**

Vady této skupiny jsou snadno identifikovatelné, mají mnoho společných znaků a členíme je na tři druhy, což dovoluje rychle určit příčinu vady a přijmout nápravná opatření. Vady souvisí se zatečením kovu do mezer ve formě nebo v jádru způsobených jejich prasknutím nebo do mezer v dělících plochách formy. Ve většině případů se dají odstranit broušením, nejsou příčinou zmetkování, zvyšují však pracnost v čistírnách a ztráty materiálu.

ZATEKLINY ZPŮSOBENÉ NETĚSNOSTÍ FORMY (261) PRASKLÉ JÁDRO (262)

Schéma vad:

![Diagram](image)
PRASKLÁ FORMA (263)

Popis zateklin způsobených netěsností formy (261)

Žebra, výčnělky a výronky různého tvaru, tloušťky a velikosti s hladkým povrchem, které se vytváří na odlitku v místech, kde mohou vznikat určité netěsnosti, tj. převážně v dělicí rovině formy a podél známeck jader. Zatekliny způsobené netěsnostmi jsou rozšířenou slévárenskou vadou, která má úzkou souvislost s precizností práce formíře, stavem modelového zařízení, formovacích rámů apod. Z toho důvodu se při navrhování technologického postupu odlitku a stanovení polohy odlitku ve formě hledá řešení, aby na odlitku bylo co nejméně dělicích ploch.

Popis zateklin způsobených prasknutím jádra (262)

Popis zateklin způsobených prasknutým jádrom (263)

Výčnělky a výstupky s hladkým povrchem na odlitku, které vznikají zatečením tekutého kovu do prasklé formy. Tyto výstupky jsou hladké, protože k prasknutí formy dochází převážně před litím a tekutý kov kopíruje vzniklou prasklinu, ve které rychle ztuhne. Protože nedojde ke znovuroztažení kovu zatečeného do praskly, je vzniklý výstupek hladký a ostrý. Zřetelně se odlišuje např. od výronků, které doprovázejí trhliny způsobené dilatací ostřiva (vada 240), protože tyto výronky vznikají při vysokých teplotách krystalizujícího odlitku a nejedná se tedy o pouhé zatečení kovu do prasklé formy. Výronky jsou mělké, povrchově zaoblené, spečené s pískem, oxidy, bublinou a vytváří síťoví („žilky“). Pokud zatekline vzniká ve velkém rozsahu, může dojít k tomu, že odlitek nebude mít úplný tvar a dojde k vadě Vytečený kov (113).

Způsob zjišťování vady: VK
8.7 Skupina vad: NEPRAVIDELNOSTI POVRCHU ODLITKU (270)

V této skupině je 7 vad, z nichž 4 vady jsou typické pro speciální technologie výroby odlitků a 3 vady mají obecnější charakter.

POMERANČOVÁ KŮRA (271)

Schéma vady

Pomerančová kůra je typickou vadou ocelových odlitků litých do pryskyřičných skořepinových forem (metodou CRONING). Pro vadu je charakteristické, že se vyskytuje především u uhlíkových a nízkolegovaných ocelí, zatímco u vysokolegovaných ocelí je výskyt méně četný a rozsah vady je menší. U odlitků z grafitických litin se pomerančová kůra u této technologie nevyvstává. Nicméně u forem a jader odlévaných s použitím směsí s organickými pojivy se objevují vady připomínající pomerančovou kůru. Název je příhodný, jedná se o povrchovou vadu odlitku, která vzhledem skutečně připomíná drsný povrch pomerančové kůry.

Pomerančová kůra se nejčastěji tvoří na rovných plochách odlitků, kde probíhá tepelná dilatace skořepinové formy. Protože povrch odlitků litých do skořepinových forem je většinou velmi hladký, defektní místo s pomerančovou kůrou výrazně znehodnocuje vzhled celého odlitku.

Vznik pomerančové kůry je nejvíce ovlivněn vlastní skořepinovou formou, dále druhem litého kovu a průběhem tuhnutí povrchové kůry odlitku.

Pro každý odlitek existuje kritické časové rozměry, ve kterém může dojít k časovému souladu mezi průhybky skořepiny a nedostatečnou pevností krystalizující kovové kůry odlitku. Každý zásah, který ovlivňuje časovou závislost mezi pevností kovové kůry odlitku a dilatací formy může být účinný.

Způsob zjištění vady: VK

ZVRÁSNĚNÝ POVRCH (272)

Schéma vady

K hlavním příčinám vzniku vady patří:

- Vznik povrchových blan, plen, případně "kůží".
- Přítomnost prvků ve slitině s vysokou afinitou ke kyslíku a dusíku (Cr, Al, Mn, Si, Mg).
- Nadměrný obsah nosičů lesklého uhlíku ve formovacích směsích.
- Styk slitiny s oxidačním prostředím při plnění formy.
- Nízká licí teplota.

Zvrásnění povrchu je způsobeno růstem povrchového napětí kovu (zvyšování metalofobnosti) při plnění formy. Na povrchu roztažené slitiny se vytváří oxidy s Cr, Al, Si, Mg, podle afinity ke kyslíku Vznikají oxidické blány tzv. kůže nebo uhlíkaté blány (pleny z lesklého uhlíku), které podstatně zvětšují povrchové napětí. Většina oxidů má vyšší bod tavení než základní kov, proto jsou vzniklé kůže vysoce tepelně stabilní. Mají i značnou pevnost, vedou ke zvrásnění povrchu, zavalení hran a rohů, a u tenkostěnných odlitků až k nezaběhnutí kovu. Zvrásnění povrchu se objevuje na vršku formy. Hliník ve slitinách železa působí v uvedeném smyslu i tehdy, je-li přidáván v malém množství jako dezoxidační přísada. Obdobně působí i hořčík, přidávaný jako modifikátor do tvárné litiny. Při vzniku kůží sehrává způsob plnění formy důležitou úlohu. Pokud je proudění laminární - klidné, nedochází k trhání oxidů a jejich vnitřním kaštanům do objemu kovu v tvaru nekovových vměstků ("nakrčenin"). Celistvost kůže proto úzce souvisí s pomalou lineární licí rychlosti a nízkou licí teplotou. U slitin hliníku, ale i grafitických litin vysvětuje tento jev Campbell svou teorií bifilmů [16,17].

Také Jelínek [18] definoval nebezpečnost vysokého obsahu nosičů lesklého uhlíku ve formovacích směsích vyvolávající vadu uhlíkaté pleny na litinových odlitcích, která se může projevit jako zvrásnění povrchu odlitku.

U chromových ocelí máme co činit i s nitridovými kůžemi. Ty se s klesající teplotou rozkládají za vyloučení plynného dusíku. Proto je přidáván do oceli titan, k vázání dusíku a k zamezení vzniku endogenních bublin, kterým kůže brání v odchodu z kovu.

Způsob zjištění vady: VK

NEŠTOVICE MÍSTNÍ A ČÁROVÉ (273)

Schéma vady

![Schéma vady](image)

Popis vady

Doličky na povrchu odlitku připomínají lidskou kůži po onemocnění neštovicemi. Jsou otiskem nárostů, ke kterým dochází na lici formy, pod kterým je lesklá hladká dutina často propojená kanálkem s vlastní vadou, svědčící o účasti plynných vzniku vady. Je to specifická vada masívních tlustostěnných ocelových odlitků, odlévaných do bazických magnezitových nebo chrommagnezitových forem.
Charakteristika vady

Neštovice se zásadně netvoří na vršcích odlitků a na plochách přivrácených k hladině tekutého kovu a tak vystavených intenzivnímu účinku sálavého tepla po dlouhou dobu lití masivních odlitků. Rozmístění neštovic je po celé stěně odlitku (neštovice místní), avšak k jejich největšímu nahromadění dochází na hranici dělících vrstev pěchování formy (neštovice čárové). Tato skutečnost hovoří o úloze plynů při tvorbě této vady. Výška nárostů odpovídá hloubce neštovic a tato vada je nepřípustná přesáhne-li její hloubka přídavek na opracování. Hloubku neštovic je možno ovlivnit jemností použitého ostřiva a tedy i prodyšností a propustností lice formy.

Způsob zjištění vady: VK

Schéma vady

OKUJENÍ, OPÁLENÍ (274)

Popis vady

Nadměrná vrstva oxidů lpící více nebo méně silně na povrchu odlitku. Vada vzniká při nesprávném tepelném zpracování odlitku, použitím příliš vysoké teploty a nevhodné atmosféry v peci. Jedná se o vadu ojedinělou, většinou opravitelnou tryskáním jemnými broky.

Způsob zjištění vady: VK

Schéma vady

KRUPIČKY (275)

Popis a charakteristika vady

Část nebo celý povrch odlitku je pokryt kovovými kuličkami, představujícími krupičku, která je pevně spojena s povrchem odlitku. Vada se vyskytuje u přesně litých odlitků s vytvářeným modelem.

Tekutý kov pronikl do vzduchových bublinek, které vznikly z následujících důvodů, viz [19]:

- Obalová hmota na první nebo druhý obal byla příliš hustá a uzavřela při obalování na povrchu modelu vzduchové bubliny.
V obalové hmotě byl rozptýlen vzduch, který zůstal v prvním obalu uzavřen.
Modely nebyly dobře odmaštěny a obalová hmota nesmočila dobře povrch modelů se zbytky dělících prostředků na formy. Pod prvním obalem zůstaly uzavřeny vzduchové polštářky.

Způsob zjištění vady: VK

DOLÍČKOVÁ A KABÁLKOVÁ KOROZE (276)

Schéma vady

Popis a charakteristika vady
Erodovaný povrch části nebo celého odlitku s malými půlkulovitými dutinami nebo klikatými kanálky různé hloubky. Vada se vyskytuje u přesně litých odlitků s vytavitelným modelem.

Některé slitiny odlévané do samonosných skořepinových forem reagují s křemem obalové hmoty a s vzdušným kyslíkem. Doporučuje se formy odlévat ve vakuu nebo v ochranné atmosféře, použít vhodnější žáruvzdorný materiál, urychlit chladnutí forem a zabránit odlévání kovu při příliš vysoké teplotě a do silně vyhrázačích forem.

Způsob zjištění vady: VK

CHEMICKÁ KOROZE (277)

Schéma vady

Popis vady
Malé půlkulovité dutiny různé hloubky na části nebo na celém povrchu odlitku. Vada vzniká při chemických způsobech čištění odlitků a při odstraňování keramiky z přesných odlitků.

Při čištění odlitků v kyselých lázních i louhováním je nutné dodržovat předepsané časy a postupy oplachování odlitků vodou pro odstranění zbytků kyselin. Vzorové postupy uvádí Doškář aj. v [19].

Způsob zjištění vady: VK
8.8 Skupina vad: VADY POVRCHOVÉ OCHRANY ODLITSKU (280)

Schéma vady

Popis vady

Konečnou operací výroby odlitku bývá nanášení ochranných nátěrů na povrch odlitku. Používají se nátěry s organickými ředidlly i ředěné vodou. Jejich účelem je ochrana odlitků proti korozí. Bohužel i k této operaci docházejí reklamace odběratelů na vady při příznivosti nátěrů, jejich odlupování, na nedostatečnou nebo nadměrnou vrstvu, nedostříknutí (hluchá místa), poškození vrstvy, poškrábání a nevyhovující korozní odolnost. Někdy jsou v dutinách odlitků zalakovány tryskací broky a jiné nečistoty.

K reklamacím na povrchovou ochranu odlitků dochází převážně z důvodů nedodržení technologické kázně, tj. porušování předpisů o nanášení nátěrů.

Způsob zjištění vady: VK

8.9 Literatura

Σ Σhrnutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

∞ Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
9 TŘÍDA VAD 300: PORUŠENÍ SOUVISLOSTI

Členění kapitoly

✓ Skupiny vad 310: TRHLINY ZA TEPLA
✓ Skupina vad 320: PRASKLINY ZA STUDENA (320)
✓ Skupina vad 330: PORUŠENÍ SOUVISLOSTI Z DŮVODU MECHANICKÉHO POŠKOZENÍ ODLITKU
✓ Skupina vad 340: PORUŠENÍ SOUVISLOSTI Z DŮVODU NESPOJENÍ KOVU
✓ Literatura

Čas ke studiu: individuální

Cíl
Po prostudování této kapitoly budete umět

- Charakterizovat vadu Povrchové trhliny za tepla.
- Charakterizovat vadu Praskliny za studena.
- Charakterizovat vadu Zavaleniny.

Výklad

Třída vad 300 zahrnuje po třídě 700 nejmenší počet vad. Převážně se jedná o vady nepřípustné a neopravitelné. Trhliny a praskliny vznikají v důsledku pochodů probíhajících v odlitku během jeho ochlazování a jsou výsledkem nerovnoměrného smršťování odlitků a vzniku napětí. Na rozdíl od těchto porušení z napětí jsou v této třídě zařazeny i vady, kdy k porušení souvislosti dochází mechanickým poškozením odlitku. Na rozdíl od vad 121 a 122 nepopisujeme vadu, kdy je ulomená celá část odlitku, nýbrž odlitek je tvarově úplný, ale z důvodu lomu je nepoužitelný. Zařazením vady Zavaleniny do této třídy, byla tím respektována klasifikace vad CIATF [1], kde se dokonce rozlišují tři druhy zavalení. Pro zavaleniny byla vytvořena skupina 340 „Porušení souvislosti z důvodu nespojení kovu“, kam patří i vada 342 Nedokonalý svar.

Hlavními skupinami vad jsou Trhliny a prasklínky. V českém jazyce to jsou synonyma. V odborném názvosloví, má každý z obou termínů jiný význam, který souvisí s rozdílným mechanismem jejich vzniku. Studenti a někteří odborníci z praxe při používání těchto termínů chybují. Autor učebnice se rozhodl (po vzoru zahraničních názvů) používat zde pro
každý z nich přívlastek: „Trhliny za tepla“ (Hot Tears) a „Praskliny za studena“ (Cold Cracks) [1].

9.1 Skupiny vad 310: TRHLINY ZA TEPLA

POVRCHOVÉ TRHLINY (311)

Schéma vady

Popis vady

Charakteristika vady

Otevřené povrchové trhliny vznikají nejčastěji v tzv. tepelných uzlech odlitku, kde je relativně pomalejší tuhnutí a v důsledku toho také momentální nižší pevnost a tažnost materiálu. Podmínkou pro vzniku trhliny v daném místě odlitku je tahové (v některých případech i smykové) napětí, které překročí pevnost a tažnost materiálu. Toto napětí působí kolmo na průběh trhliny a vektor síly umožňuje specifikovat příčinu napětí. Trhliny za tepla patří mezi nejnebezpečnější vady odlitku.

Vznik každé trhliny je ovlivněn dvěma základními podmínkami:

- Vznikem napětí v odlitku, které vyvolávají tahové, případně smykové síly.
- Schopností materiálu odlitku tomuto napětí odolat, tedy jeho pevnosti a tažností v teplotním rozmezí vzniku trhliny.

Kinetika vzniku trhliny je mimořádně složitá především proto, že probíhá v průběhu tuhnutí a krátké po ztuhnutí odlitku, kdy je tažnost a pevnost materiálu ještě velice nízká a kdy relativně malé síly mohou vyvolat tržení odlitku. Technicky je obtížné zabránit jak vzniku napětí v odlitku, tak také docílení vyšších pevnostních a plastických vlastností litého materiálu při teplotách v blízkosti solidu. I když je problematika vzniku trhlin teoreticky dobře zvládnuta, praktické řešení je často obtížné [2,3].

Velice obtížná je specifikace hraniční čáry mezi trhlinou povrchovou - otevřenou a trhlinou podpovrchovou, z hlediska příčin vzniku [3]. Otevřená trhлина je nejčastěji způsobena odporem jádra nebo formy proti volnému smršťování odlitku, které prakticky začíná po ztuhnutí souvislé kůry odlitku, kdy jsou pevnost materiálu nepatrně, až po teploty ukončení krystalizace, kdy jsou již k vyvolání trhliny nutné větší síly. I po ukončení krystalizace odlitku existuje značná teplotní i pevnostní heterogenita jednotlivých míst na

Stejně tak existuje řada příčin, proč došlo k roztržení odlitku právě v daném místě. Jedná se vždy o místo pevnostně zeslabené. Nejčastěji je to souvislost s pevnostně zeslabeným místem, nebo místem, které již bylo oslabeno vznikem krystalizačních trhlin, které byly regenerovány jen nedokonale.

Trhlina za tepla může vzniknout i tehdy, nemá-li odlitek konstrukční tepelné uzly (např. hladký válec). Přesto však existují na každém odlitku teplotní nerovnoměrnosti, např. vyvolané rozdílnou průtočností kovu („technologické“ tepelné uzly) a tedy rozdílným prohřátím jednotlivých míst odlitku. Čím jsou všechny nehomogenity a slabá místa menší, tím větší je potřeba síly k překonání pevnosti materiálu. Čím je odlitek rozměrnější a má tedy větší lineární smrštění, tím je pravděpodobnější vznik trhliny.

Způsob zjištění vady: VK, UZK, ZVK, KPZ

PODPOVRCHOVÉ TRHLINY (312)

Schéma vady

Popis vady

Podpovrchové porušení souvislosti odlitku, které není viditelné pouhým okem. Vadu většinou zjistíme až po provedení nedestruktivních zkoušek (magnetické polévací zkouška nebo povrchové kapilární zkoušky). Trhlina je většinou pod jemně vykrystalizovanou povrchovou kůrou odlitku a je často doprovázena povrchovým výronkem (podle výronku nelze však usoudit na hloubku trhliny a v některých případech není výronek provázen podpovrchovou trhlinou).[3]

Někdy postupuje trhlina jemnou vlásečnicí až na povrch odlitku, není však pouhým okem viditelná. Časté souvislosti mezi výronkem a podpovrchovou trhlinou svědčí o tom, že vada vzniká v procesu krystalizace odlitku, kdy je pod tuhounou povrchovou kůrou dostatek tekutého kovu, který zaplňuje vzniklou trhlinu a navíc proniká do povrchové vrstvy formy. V době vzniku podpovrchové trhliny se většinou ještě neprojevuje odpor jádra proti volnému smrštování odlitku, protože mezi kovovou kůrou od formy a od jádra je uvnitř tekutý kov. Hloubka téhoto trhlin je různá. Ve většině případů souvisí s hloubkou sloupkovitých kolumnárních krystalů.
Charakteristika vady

Na rozdíl od otevřených trhlin za tepla, které jsou především způsobeny odporem jádra nebo formy proti volnému smršťování odlítku v době, kdy je v podstatě krystalizace odlítku ukončena vznikají podpovrchové trhliny v raném stadiu krystalizace odlítku.

Síly, převážně tahové, které jsou vyvolány odporem jádra nebo formy proti volnému smršťování, namáhají největší sílou vnější část odlítku a proto je trhлина nejvíce rozevřena z vnějšího obvodu odlítku a směrem dovnitř se roztržení zmenšuje. V průběhu vzniku krystalizační trhliny je situace poněkud odlišná. Na styčné ploše kov - forma a kov - jádro dojde k okamžité krystalizaci, vznikne jemnozrnná povrchová kůra, za kterou postupuje růst protáhlých dendritů, jejichž hlavní osa je kolmá na povrch formy nebo jádra. Mezi krystalizujícími vrstvami zůstává tekutý kov. Již vykrystalizovaná vrstva kovu a také vrstva krystalizující je namáhána různými silami ještě v průběhu lití, nebo krátce po odlití. Kovová kůra vnitřní i vnější začne smršťovat a jádro klade odpor vnitřní smršťující kůře (vykrystalizované od jádra), zatímco vnější vrstva krystalizující od formy smrští je relativně volně a tlačí na tekutý kov. Pokud vznikne na vnitřní kovové kůře trhлина, je okamžitě regenerována přítomným tekutým kovem. Odpor jádra je tedy v této fázi méně nebezpečný. Obě kůry mají velmi malou pevnost a tažnost a proto také síly potřebné k natržení mohou být malé.

Tento výskyt je častěji u středně velkých odlítků. Je tomu tak proto, že u malých odlítků je proces krystalizace relativně rychlejší a metalostatické tlaky jsou také menší. U velkých odlítků jsou sice vysoké metalostatické tlaky, ale delší doba přítomnosti tekutého kovu usnadňuje regenerační procesy a navíc u velkých form jsou častěji používány formovací hmoty zabezpečující vyšší pevnost celé formy.

Způsob zjištění vady: Nedestruktivní kontrola RTG
Vnitřní trhliny (313)

Schéma vady

Popis vady

Vnitřní trhliny jsou vnitřním porušením souvislosti materiálu odlitku vznikající převážně u masivních těžkých odlitků. Rozsah vady je rozdílný a v zásadě se řídí velikostí a hmotností odlitku. K vadě může dojít v různých fázích výroby, např. při chladnutí odlitku ve formě z vysokých teplot po jeho ztuhnutí [4]. V tomto případě jde o vnitřní trhlinu, jejíž průběh sleduje hranice zrn, lom je hrubozrnný a rozsah vady neškodný velký. Dojde-li k porušení při nižších teplotách (ve formě, při tepelném zpracování - náhřevu nebo chladnutí, po upálení náletu ap.), jde o prasklinu za studena, jejíž průběh je zpravidla rovný, nebo mírně nakřivený, směřující kolmo, nebo téměř kolmo k hlavní ose napětí (tedy v příčném směru na delší osu odlitku, v níž odlitek smršťuje). Rozsah této vady je značně velký a může postupovat od vnitřní oblasti celým průřezem až k vnějšímu povrchu.

Charakteristika vady

Příčinou vnitřního porušení souvislosti materiálu je vnitřní tahové pnutí v odlitku, tepelné (jako hlavní) a fázové pnutí. V odlitku se tento stav napjatostí - tahové napětí ve vnitřních oblastech a tlakové ve vnějších vrstvách - vyvíjí od konce jeho úplného ztuhnutí, kdy vlivem velkého tepelného gradientu v průřezu stěny a tím intensivního tepelného toku ze středu k povrchu odlitku, chladnou rychleji vnitřní partie než vnější vrstvy a v důsledku jejich smršťování se vyvíjí ve vnitřním pásmu tahové napětí a ve vnějších vrstvách tlakové napětí. Největší napětí je ve směru hlavní (delší) ose. Z tohoto důvodu existují v odlitku napěťové podmínky, které mohou za určitých předpokladů při vysokých teplotách ve odlitku pod teplotou solidus vyvolat porušení souvislosti materiálu, v tomto případě trhlinu. Jejich skutečný vznik je však ovlivněn dalšími činiteli, jako např. hmotností a velikostí odlitku, hodnotou gradientu teplot v odlitku, náchylností materiálu ke tvorbě trhlin (jeho chemického složení) aj. Nutno však vžít v úvahu, že vznikající napětí za vysokých teplot okamžitě uvolňuje plastickými deformacemi a k trhlině může proto dojít až po jejich vyčerpání a to v tlakové i tahové oblasti.

S jistotou však lze říci, že vyvíjející se pnutí při těchto teplotách je malé, takže k vnitřní trhlině po ztuhnutí odlitku může dojít ve skutečnosti pouze v případě shody všech účinných vlivů, tj. velký rozměr odlitku s převažující hlavní osou, velká masivnost odlitku (průběh i gradient teplot) a materiál náchylný k tvorbě trhlin (obsah uhlíku kolem 0,1 - 0,3 %, vysoký obsah S a P) [5]. Proto vznik poruch souvislosti materiálu v osové části odlitku při těchto...
teplotách je málo pravděpodobný a rozsah trhlin je malý. Nejinovější prací je příspěvek Stránského a kolektivu, ve kterém byla definována kritéria pro hodnocení sklonu oceli tavené na elektrické obloukové peci ke vzniku trhlin [6].

Způsob zjištění vady: UZK.

9.2 Skupina vad 320: PRASKLINY ZA STUDENA (320)

Schéma vady

Popis vady

Rovné nebo mírně zkřivené roztržení (prasknutí) stěny odlíku, vzniklé při nízkých teplotách, při nichž má slitina pružné deformace. Praskliny mohou vznikat i po úplném vychladnutí odlitku ve formě, popř. během vytloukání odlitku z formy nebo po předčasném vyjmutí odlitku z formy, anebo též v průběhu následného tepelného zpracování. Povrch praskliny je typicky zrnitý a čistý, někdy barevně naběhlý až zřetelně zoxidovaný, podle toho při jaké teplotě a v které fázi výroby odlitku vznikla, zda vznikla během chladnutí odlitku ve formě, při odřezání nálitků a vtoků, nebo při tepelném zpracování. Praskliny jsou obvykle více méně rozvřeslené, přičemž šířka rozvření je úměrná původnímu deformaci před vznikem praskliny. Avšak toto pravidlo nemá všeobecnou platnost.

Praskliny se mohou též postupně šířit a to v závislosti na stavu napjatosti v odlitku a strukturních změnách, které odlitek prodělává během chladnutí, popř. během ohřevu při následujícím tepelném zpracování. V takovém případě lze jednotlivé stupně šíření praskliny více méně od sebe odlišit pomocí náběhových barev a zároveň posoudit, v které výrobní fázi praskliny vznikly. S touto vadou se setkáváme nejčastěji u ocelových odlitků.

Charakteristika vady

Praskliny za studena vznikají účinkem tepelného napětí v odlitku, které vzniká v důsledku velkých rozdílů teplot, které jsou v jednotlivých částech odlitku. Sklon k prasklinám je podporován velkými rozdíly v tloušťkách stěn odlitků. Nesprávná konstrukce
odlitku, např. ostré přechody z tenkých do tlustých stěn, jakož i nevhodné umístění vtokové soustavy a nálitků, jež vedou k velkým gradientům teplot v odlitku, mohou mít významný vliv na výskyt prasklin.

U ocelí z fyzikálně-chemických a metalurgických faktorů zvyšuje sklon oceli k prasknutí také s chemickou heterogenitou lázně.

Nejkritičtější období napěťového stavu odlitku nastává až po skončení fázové přeměny v osové části, kdy v důsledku teplotního rozdílu v průřezu nastává intenzivní tepelný tok zevnějšímu povrchu a tím rychle chladnutí jeho vnitřních oblastí. V důsledku toho se v osové oblasti vyvíjí tepelné tahové pnutí, které trvá až do jeho úplného vychladnutí. Nebezpečnost pro odlitek je v tom, že při kritické teplotě, což je u ocelí přibližně 620 °C přechází materiál do pružné oblasti i uvnitř odlitku a gradientem 180 °C je určeno budoucí zbytkové pnutí v odlitku, které se chladnutím stále zvyšuje a maximální je při úplném vychladnutí odlitku. Jeho částečné uvolnění na skutečnosti, že toto trvalé napětí je nebezpečné. Vznikem, trvalým působením a stále rostoucím tahovým napětím, dochází k vnitřnímu porušení souvislosti materiálu, v tomto případě k prasklině za studena.

Protože odlitek prošel austenitizační teplotou, je struktura lomu jemná. Dojde-li k vadě při vysokých teplotách v době chladnutí ve formě nebo napětím před dosažením a výdrží na teplotě austenitizace, je lom hrubozrnný (kamenitý) s původní ličí strukturou. Rozsah příčné praskliny je podle podmínek rozdílný, vyvíjí se v odlitku ve tvaru "disku" a může zasahovat až k okraji odlitku, takže se prasklina objeví při opracování, nebo praskne při prvním namáhání za provozu.

Nejčastější a také rozsahem největší porušení souvislosti materiálu - praskliny, vznikají při neodborném opracování, např. při velkých úběrech (vrtání, frézování) materiálu v masivních odlitcích, zvláště v celém průřezu. Prasklina vzniká tím, že náhlým a jednostranným úběrem vznělých vrstev s tlakovým pnutím se poruší stav napjatosti (rovnoměrného zvukového efektu) a uvolní se v hladce pnutí ve vnitřních vrstvách, které zpravidla za zvukového efektu vyvolá prasklínu velkých rozměrů. Úběr musí být proveden v menší vrstvě rovnoměrně kolem celého obvodu a po dvou - třech úběrech je třeba zařadit mezižíhání na snížení pnutí. Rovněž dochází ke zvyšku prasklin po upálení nálitku kyslíko-acetylenovým hořákem. Hlavní podmínkou zabránění prasklin po upálení je dokonalá tepelná ochrana upálené plochy proti rychlému chladnutí. Výšší náchynnost k této poruchám je u nevhodné oceli s nízkou tepelnou vodivostí (legované oceli), při nízké teplotě předejehřátí odlitku před odstraněním nálitku a větším plošném rozměru odlitku.
Třída vad 300: Porušení souvislosti

U litin s lupínkovým grafitem [8] je přičinou vzniku prasklin v odlitech hlavně mechanické brzděné smršťování litiny při chladnutí odlitek, které způsobuje materiál formy, výztuhy, jádra ap. Jestliže vznikají praskliny před perlitickou přeměnou, potom roste jejich pravděpodobnost s velikostí smršťování před vyloučením perlitu. Přitom velikost smršťení klesá se stupněm grafitizace litiny, což znamená, že čím větší je podíl grafitu z celkového obsahu uhličí v litině, tím menší je její smrštění a tím menší je sklon k prasklinám.

Smrštění po vyloučení perlitu (poperlitické) však na chemickém složení, stupni grafitizace, ani na struktuře nezávisí [2], takže je funkcí velikosti napětí v odlitech následkem tepelného brzděného smršťování.

U litin mohou vznikat praskliny na úplně vychladnutých odlitech vlivem nárůstů, při nichž se často spojují účinky vnitřních pnutí s účinky pnutí od vnějšího zatížení. Tyto praskliny vznikají následkem sklonu litiny ke křehkému, nestabilnímu lomu, neboť lomová houževnatost šedých litin je nízká.

Způsob zjištění vady: VK - Praskliny za studena lze zjistit též zvukovou zkouškou (tj. poklepicem kladivem), zkouškou prozařování nebo ultrazvukem a menší praskliny zkouškami kapilárními.

9.3 Skupina vad 330: PORUŠENÍ SOUVISLOSTI Z DŮVODU MECHANICKÉHO POŠKOZENÍ ODLITKU

Schéma vady:

LOM ZA TEPLA (331) LOM ZA STUDENA (332)

POPISE VADY

Porušení souvislosti odlitku vzniklé mechanickým působením na odlitek. Lom se liší od praskliny tím, že je sevřený a často stěží viditelný. Rozlišení, zda se jedná o lom za tepla nebo lom za studena, můžeme provést jen z lomové plochy po dolomení odlitku. Lom za tepla má silně zoxidovanou lomovou plochu, lom za studena je čistý.

Lom za studena je způsobován při dopravě, manipulaci a čištění odlitků jsou to zejména pády odlitků z velké výšky, společné tryskání silnostenných a tenkostenných odlitků v bubnovém tryskači aj.

Oběma vadám předcházíme pečlivým zacházením s odlitky ve všech fázích výrobního procesu.

Způsob zjištění vady: VK
9.4 Skupina vad 340: PORUŠENÍ SOUVISLOSTI Z DŮVODU NESPOMNĚNÍ KOVU

ZAVALENINY (341)

Schéma vady

- a)

- b)

Popis vady

Zavaleniny nebo také studené spoje jsou rýhy, prohlubně nebo zvrásnění se zaoblenými okrajemi (příklad a), které se objevují na povrchu odlitku, v blízkosti zalévaných předmětů nebo procházejí celou sténnou odlitku (b). Na odlitku se projevují v různé podobě, nejvíce však jako rýhy - zvrásnění povrchu (vada 272), studené svary.

Narušení celistvosti tohoto charakteru spoje se silně projeví např. při namáhání odlitku při vyšších teplotách a vzniku pnutí v odlitku. Ve studených spojích (zavaleninách) vznikají potom praskliny.

Příčiny jsou obdobné jako u Nezaběhnutí (111) odlitku. Obě vady se někdy zaměňují - pokud nezaběhnutí odlitku je v menším stupni. Vznikají převážně u kovů s vysokou oxidací povrchu při lití (tvorba blán s vysokou teplotou tání) u odlitků tvarově složitých nebo rozlehlých ploch, kde dochází k intenzivnímu ochlazování povrchu kovu ap.

V zásadě jde o tyto příčiny:

- Tavenina náchyná k oxidaci povrchu, převážně u slitin hliníku, u ocelí legovaných chromem, vysoký obsah Al v oceli nebo litině.
- Odlitek s velkou povrchovostí a intenzivním ochlazováním taveniny (tenké stěny, složitý tvar nebo velké plochy odlévané v horizontální poloze).
- Příliš vysoký výskyt plynů v dutině formy a její špatné odvzdušnění.
- Nízká teplota lití (nejčastěji případ).
- Nevhodně řešená vtoková soustava, kdy dojde k setkání dvou proudů kovu, na čele zoxidovaných a předčasně tuhých kovů, mezi nimiž nedojde k metalurgickému svaření, ale pouze ke "slepení" (studený spoj); v těchto případech vznikne zavalenina jdoucí přes celou tloušťku stěny odlitku.
- Malá rychlost lití vzhledem ke konstrukci odlitku a druhu odlévaného materiálu; materiály náchyné k oxidaci a tenkostěnné odlitky vyžadují krátké doby lití s minimální turbulencí (tedy nikoliv vysokými vstupními rychlostmi, nýbrž podtlakovou soustavou s vysokou objemovou rychlosti), [9].
- Nevhodný způsob vlastního odlévání - houpání kovu při lití, přerušované lití - což je jistou příčinou studených spojů, neboť čelo proudu nebo hladiny ve formě okamžitě oxiduje nebo tuhne a jeho další pohyb vytvoří u povrchu formy zavaleniny, přičemž čelo proudu se již nesvaří s dalším kovem, který přelil vzniklou pevnou blánu na jeho konci nebo na hladině. Čím je tloušťka stěny (vzhledem k velikosti odlitku) menší, tím nebezpečnější je přerušení lití.
Způsob zjištěné vady: VK

NEDOKONALÝ SVAR (242)

Schéma vady

![Svar schéma](image)

Popis vady

Vada vzniká při opravě slévárenských vad (dutin) na odlitcích zavařováním, projevující se prasklinami ve svarech, trhlinami v okolí spoje nebo neúplným vyplněním dutiny původní vady odlitku.

Nedokonalý svar vzniká zejména nedodržením postupu přípravy svarových ploch a odstranění všech nekovových vměstků a nečistot z místa vady. Dalším zdrojem chyb je nedodržení postupu vlastního svařování. Zásady oprav vad odlitků uvádí různé příručky a literatura zabývající se svařováním.

Způsob zjišťování vady: VK, případně UZK

9.5 Literatura

Σ

Shrnutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

❓

Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitol“
10 TŘÍDA VAD 400: DUTINY

Členění kapitoly
- Skupina vad 410: BUBLINY
- Skupina vad 420: BODLINY
- Skupina vad 430: ODVAŘENINY
- Skupina vad 440: STAŽENINY
- Literatura

Čas ke studiu: individuální

Cíl
Po prostudování této kapitoly budete umět
- Charakterizovat vady skupiny Bubliny.
- Charakterizovat vady skupiny Bodliny.
- Charakterizovat vady skupiny Staženiny.

Výklad

Dutiny se podílejí na celkové zmetkovitosti sléváren slitin železa i ze slitin neželezných kovů až z jedné poloviny. Navíc, jak jsme si ukázali, na mnohé vady z této třídy působí současně nejvíce vlivů. Dutiny jsou vady poměrně snadno zjistitelné prohlídkou odlitku nebo nedestruktivní kontrolou. Odlitky s těmito vadami jsou většinou neopravitelné. Proti ČSN 4212 40 je v této učebnici třída 400 značně rozšířena. Především jsou zde nově zařazeny Odvařeniny, které se v minulosti klasifikovaly mezi bubliny.

Vady třídy 400 jsou způsobeny přítomností plynů v kovech a ve formě a objemovými změnami při tuhnutí kovu. Pro pochopení mechanismu vzniku vad třídy 400 je zapotřebí dokonalá znalost slévárenských pochodů, metalurgie tavení a úpravy tekutého kovu, jakož i technologie formovacích materiálů.
10.1 Skupina vad 410: BUBLINY

Schéma vad

Popis vad

Bublinami se rozumí dutiny v odlitku a to buď otevřené, tj. spojené s povrchem nebo uzavřené, tj. vnitřní. Vyskytují se jako jednotlivé bubliny nebo v rozsáhlých shluchtách a mohou být též rozloženy v celém objemu odlitku. Vznikají buď jako bubliny s čistým, hladkým povrchem, tak s povrchem oxidovaným. Toto rozlišení však platí pouze pro bubliny uzavřené, neboť otevřené bubliny mají povrch pokrytý vrstvou oxidů již následkem styku s atmosférou během tuhnutí a chladnutí odlitku.

Tvar bublin je velmi rozmanitý a bubliny mají kulový až elipsoidní tvar, avšak i nepravidelný protáhlý tvar.

Charakteristika vady

Podle původu se bubliny rozdělují na endogenní a exogenní [1].

Endogenní bubliny vznikají z rozpuštěných plynů ve slitině tehdy, jestliže tlak rozpuštěného plynu vyloučeného z taveniny převyšuje odpory působící proti jeho úniku z taveniny.

Exogenní bubliny vznikají při odlévání, jestliže tlak plynů v dutině formy převyšuje odpor, který mu klade tavenina a tuhnoucí povrchová vrstva. Plyn vnikne do odlitku a taveniny. V takovém případě mohou být tehdy hodnoceny jako zahlčený plyn (vada 414 - Zahlcený plyn). Jen jednou druhé mají mnohé společné znaky a někdy nelze obě vady jednoznačně od sebe odlišit.

Podle příčiny vzniku se bubliny dále dělí na [2]:
- **Bubliny způsobené kyslíkem (411)**
- **Bubliny způsobené vodíkem (412)**
- **Bubliny způsobené dusíkem (413)**

Uvedené typy bublin mají společnou základní příčinu spočívající v tom, že během odlévání a zejména během tuhnutí kovu, kdy se pohledem teploty prudce sníží rozpustnost plynů v kovu a při překročení mezní rozpustnosti závislé na teplotě, tlaku a složení slitiny se tyto plyn vyloučí v molekulární formě a vytvoří disperze - bubliny. Děje se tak mechanizmem heterogenní nukleace. U dobře dezoxidovaných slitin železa se v hlavní míře na tvorbě bublin podílí vodík a dusík.

Jediné v těch případech, kdy není účinek kyslíku kompenzován dezoxidačními reakcemi, se může tento prvek podílet na tvorbě bublin, případně být jejich hlavní příčinou. Kyslík ve slitinách železa však nezpůsobuje bubliny přímo, nýbrž prostřednictvím uhlikové reakce tím, že váže uhlik v tekutém, případně tuhnujícím kovu ve formě oxidu uhelnatého CO.
Sklon slitin železa k bublinám roste s tloušťkou stěny odlitků a klesá s metalostatickým tlakem.

Náchylnost ocelí k tvorbě bublin značně roste u přetaveb vratného odpadu, které probíhají bez oxidačního údobí, přičemž je významně závislá na podílu vratného odpadu ve vsázce. To se uplatňuje zejména u slitinových ocelí s vysokým obsahem přísadových prvků. Recyklaci vratného odpadu se totiž v oceli zvyšuje obsah vodíku a dusíku přestupem z atmosféry a případně i z jader. To se uplatňuje zejména u slitinových ocelí s vysokým obsahem přísadových prvků.

Recyklací vratného odpadu se totiž v oceli zvyšuje obsah vodíku a dusíku přestupem z atmosféry a případně i z jader, což se odrazí ve zvýšené náchylnosti k tvorbě bublin, ale i trhlin za tepla a prasklin za studena.

Náchylnost litinových odlitků k tvorbě bublin vlivem kyslíku, vodíku a dusíku je řízena analogickými zákonitostmi jako je tomu u ocelí, s tím rozdílem, že je zapotřebí vzít v úvahu vyšší obsah vodíku a křemíku a vliv obou prvků na rozpustnost kyslíku, vodíku a dusíku v litině. Uhlík a křemík zvyšují rozpustnost kyslíku, avšak snižují rozpustnost vodíku a dusíku. Také u litin [7] se musíme vyhýbát použití nevhodné vsázky, např. velké množství mnohokrát přetavaného vratního odpadu, použití rezavého, vlhkého a nedotčeného odlitku, všeobecně použití vlhké vsázky a prodlužování tavení.

Omezený rozsah této učebnice nedovoluje teoreticky analyzovat mechanismus vzniku bublin u slitin železa. Odborná literatura přináší bohaté informace a jejich souhrnné zpracování by bylo námětem pro samostatnou monografii. V tomto směru lze doporučit často citované monografie [1,3], ale i bohatou časopiseckou literaturu [2,4,5,6].

U ocelových odlitků působí spolu s uvedenými vlivy na vznik bublin nejvíce průběh oxidačního údobí tavby, jehož cílem je prostřednictvím uhlíkového varu snížit obsah plynů, vodíku i dusíku, co nejvíce.

U odlitků ze slitin hliníku způsobuje bubliny hlavně vodík. Je to dáno reakcí vodní páry s dominantním prvkem hliníkem podle rovnice:

$$2 \text{Al} + 3 \text{H}_2\text{O} = \text{Al}_2\text{O}_3 + 3\text{H}_2$$

Rozpustnost vodíku je v tekutém hliníku značná a výrazně roste s teplotou. Ten se pak během krystalizace vylučuje ve formě bublin a plynové pěrovity. K omezení tohoto jevu je zapotřebí, stejně jako u slitin Fe, používat suché a čisté suroviny [8] (např. nezaolejované). Dnes je také běžnou praxí, že se před odléváním provádí odplynování taveniny injektáži inertních plynů.

Způsob zjištění vady

Otevřené, povrchové bubliny VK ještě před mechanickým opracováním odlitku. Uzavřené vnitřní bubliny je možno zjistit zkovskou ultrazvukem, prozářením RTG. Ve sporných případech, anebehdy kdy jsou bublinami postiženy velké série odlitků těže tavby, se ověřuje rozhodně i plocha bublin na rozlomených odlitcích. Rozlišení bublin způsobených kyslíkem, vodíkem nebo dusíkem není možné provést podle vzhledu. K tomu je třeba provést stanovení obsahu jednotlivých plynů např. metodou tavení v inertním plynu z taveninového vzorku nebo z části odlitku.

Omezený rozsah této učebnice nedovoluje teoreticky analyzovat mechanismus vzniku bublin u slitin železa. Odborná literatura přináší bohaté informace a jejich souhrnné zpracování by bylo námětem pro samostatnou monografii. V tomto směru lze doporučit často citované monografie [1,3], ale i bohatou časopiseckou literaturu [2,4,5,6].

U ocelových odlitků působí spolu s uvedenými vlivy na vznik bublin nejvíce průběh oxidačního údobí tavby, jehož cílem je prostřednictvím uhlíkového varu snížit obsah plynů, vodíku i dusíku, co nejvíce.

U odlitků ze slitin hliníku způsobuje bubliny hlavně vodík. Je to dáno reakcí vodní páry s dominantním prvkem hliníkem podle rovnice:

$$2 \text{Al} + 3 \text{H}_2\text{O} = \text{Al}_2\text{O}_3 + 3\text{H}_2$$

Rozpustnost vodíku je v tekutém hliníku značná a výrazně roste s teplotou. Ten se pak během krystalizace vylučuje ve formě bublin a plynové pěrovity. K omezení tohoto jevu je zapotřebí, stejně jako u slitin Fe, používat suché a čisté suroviny [8] (např. nezaolejované). Dnes je také běžnou praxí, že se před odléváním provádí odplynování taveniny injektáži inertních plynů.

Způsob zjištění vady

Otevřené, povrchové bubliny VK ještě před mechanickým opracováním odlitku. Uzavřené vnitřní bubliny je možno zjistit zkovskou ultrazvukem, prozářením RTG. Ve sporných případech, anebehdy kdy jsou bublinami postiženy velké série odlitků těže tavby, se ověřuje rozhodně i plocha bublin na rozlomených odlitcích. Rozlišení bublin způsobených kyslíkem, vodíkem nebo dusíkem není možné provést podle vzhledu. K tomu je třeba provést stanovení obsahu jednotlivých plynů např. metodou tavení v inertním plynu z taveninového vzorku nebo z části odlitku.
Zahlcený plyn (414)

Schéma vady

Popis vady

Dutiny nejčastěji s hladkými, zaoblenými stěnami a ve tvaru zploštělých a rozměrných bublin (puchýřů). Vyskytují se na povrchu odlítku buď izolovaně, nebo ve shlucích. Většinou jsou otevřené, ale mohou být i zalité pod tenkou vrstvou kovu. Mají společné znaky s otevřenými bublinami endogenního původu, od nichž se odlišují sploštělým tvarem a tím, že připomínají puchýře.

Charakteristika vady

Vada bývá nejčastěji způsobena nevhodnou konstrukcí formy, nesprávným a nevhodným formovacím postupem, zejména špatným odvzdušněním formy a jádra. Při odlévání tekutého kovu do formy musí být z dutiny formy nejdříve vytlacen vzduch, který ji vyplňoval, dále plyny uvolňující se z formovacích hmot, ale též z formy se vypařující vlhkost. Dále musí být z kovu a formy odvedeny plyny vznikající z organických i jiných nečistot na povrchu chladítek, podpěrek jader aj. reagujících s odlévaným kovem. Objem z formy vytlácovaného plynu se s rostoucí teplotou během odlévání velmi rychle zvětšuje. Na množství (objem) plynu zachyceného ve formě ve tvaru exogenních plynových bublin má pak vliv také rychlost plnění formy. Je-li rychlost plnění formy větší než rychlost plynů z ní odváděných, mohou zbývající plyny uvíznout ve špatně odvzdušněných místech formy, nebo se smíšit s kovem a vytvořit v odlítku exogenní dutiny typu zahlceného plynu. Při menší rychlosti zbývá více času k úniku plynu a nebezpečí začíná se snižovat, roste však sklon k vzniku vady jiného typu (220 - Zálupky, 524 - Oxidické pleny aj.). Pro zvětšení odsávacího účinku se unikající plyny zapalují krátce po začátku odlévání.

Způsob zjištění vady: VK

SÍTKOVITÉ BUBLINY (415)

Schéma vady

Popis vady

Malé povrchové dutiny o velikosti převážně 1 až 2 mm. Dutiny mají kulovitý tvar a vyskytují se pouze v licí kůře odlítku. Vady se vyznačují velkou plošnou hustotou a vyskytují se na velkých plochách. Jejich povrch má charakter jemné kovové síťky.

Charakteristika vady

Velký vliv na vznik sítkovitých bublin má vypařování vody v syrových nebo nedostatečně vysušených formách a jádrech. U formy a jader s organickým pojivem se uplatňuje i termodestrukce organických látek. U formy, které mají navíc malou prodyšnost, se
sklon ke vzniku této vady zvětšuje. O tom svědčí fakt, že vada byla pozorována u téhož ocelového odlitku pouze ve vršku formy a pod dělicí plochou se nevyvstávala. S vadou tohoto typu se můžeme setkat i při odlévání do forem s neočištěnými vnějšími chladítky, nebo když na nich kondenzuje voda.

Způsob zjišťování vady: VK

10.2 Skupina vad 420: BODLINY

Schéma vady

Popis vady

Povrchové a podpovrchové bodliny „čárkové“ vady (Komafehler)

Poznámka: Existuje ještě další typ vady, který má s bodlinami mnoho společných znaků a který je v německé literatuře znám jako »Kommafehler« [9,10], což lze volně přeložit jako „kapkovitá nebo čárková vada“ a představuje trhlinové podpovrchové dutiny vycházející i na povrch odlitku.

Charakteristika vady

Vada se začala ve větší míře objevovat v souvislosti s rozšířením formování do syrových nesušených forem. Bodliny se vyskytují u odlitků ze slítin železa a to nejen u ocelových odlitků ale i u litin. Mechanismus vzniku vady je však u obou materiálů odlišný, nicméně některé příčiny vzniku jsou společné. Teoretických výkladů této vady je několik. Další analýzu provedeme zvlášt pro každý materiál.
Bodliny u ocelových odlitků

Nejpravděpodobnějším vysvětlením je tvorba oxidu uhelnatého, který vzniká reakcí uhlíku v tekuté oceli s oxidem železnatým, popřípadě přímo s kyslíkem rozpuštěným v povrchových vrstvách tuhnutí odlitku. Z termodynamické rovnováhy mezi C, O₂ a CO v oceli při teplotě 1531 °C plyne, že při koncentraci 0,33 hm. % C postačuje 60 hm. ppm O₂ rozpuštěného v oceli k tomu, aby vzniklo akutní nebezpečí vzniku bodlin [4].

Zamezit vzniku bodlin lze tedy nejlépe tím, že zabráníme reoxidaci oceli a to tak, že v ní vytvoříme přebytěk deoxidačních prvků (Al, Ca, Si), na které se pevně váže kyslík působící na kov při styku s její atmosférou. Jak ukázala práce Přibyla [11] příhodné podmínky pro vznik bodlin vznikají v místech klidného plnění formy „v tišinách“ a u tenkostěnných odlitků s kratší dobou tuhnutí, kde se vznikající buble deformuje do protáhlého tvaru během růstu kolumnárních krystalů.

Vznik bodlin je podporován chybami ve způsobu tavení oceli, např. špatným uhlíkovým varem, použitím vlhkých přísad a nedokonalou deoxidaci oceli, dále špatně vysušeným opíchovým žlábkem pece, nedokonale vysušenou pánví a přirozeně v hlavní míře vysokou vlhkostí formovací směsi, popř. i místním navlhčením formy nebo jádra. Není-li v oceli, potřebný přebytěk deoxidujícího prvku, který by likvidoval příznak kyslíku v hlavové formě, vzniká v konečném důsledku oxid uhelnatý, který se pro svou nízkou rozpustnost ve slitinách železa vyloučí ve formě bodlin. Ze zkušeností mnohých sléváren je znám kritický obsah Al 0,02 %, pod touto hranicí se při odlévání na syrovo vyskytnou bodliny. S rostoucím stupněm průtočnosti a tloušťky stěny náchylnost k tvorbě bodlin klesá, rostoucí atmosférická vlhkost tuto náchylnost zvyšuje, stejně jako zvýšený obsah vlhkosti ve formovací směsi (nad 3,8). Pak by obsah Al větší než 0,02 % nemusel zaručit eliminaci bodlin.

Bodliny u litinových odlitků

Třída vad 400: Dutiny

zvýšení obsahu Al, Ti a Mn v litině, při poklesu teploty lití, při poklesu obsahu uhlíkatých látek ve formovací směsi a při její stoupající vlhkosti. Co se týče obsahu Al, kritickou oblastí pro vznik bodlin je rozsah 200 až 1 500 ppm. Při obsazích 1500 až 2000 ppm lze naopak výskyt bodlin úplně potlačit, protože se na rozhraní forma-kov vytváří silná souvisslá vrstva oxidů Al, ale povrch odlitku je zvrásněný a zcela nevhodný.

Endogenní mechanizmus vzniku bodlin je spojován s reakcí sekundární strusky bohaté na oxidy s taveninou, případně z uhlíkatých látek ve formovací směsi. Touto reakcí vzniká CO, který vytváří bodlinu. Vznik vady také podporuje vodní pára [12].

Rozsáhlý výzkum uskutečnil kolektiv japonských badatelů [15], který konstatoval, že vznik bodlin u litin nemá zcela jednoznačné příčiny a že bude záviset na konkrétních podmínkách výroby odlitku, který mechanizmus převládne. Tito autoři, na základě zkoumání morfologie vady pomocí řádkovacího elektronového mikroskopu SEM a energiově disperzní spektrometrické mikroanalýzy EDS, stanovili pět mechanizmů vzniku bodlin: 3 exogenní (fyzikální typ, typ rozpouštění a jiné vlivy) a 2 endogenní (typ oxidační reakce, typ s tvorbou strusky). Zmiňovaná práce Kurokawy [15] má velký význam pro určování příčin vzniku bodlin podle jejich vzhledu a morfologie, což v praxi bývá často jediná cesta, jak identifikovat mechanizmus vady.

Experimenty prováděné autorem učebnice [16,17] potvrdily některé literární poznatky o vlivu Al na vznik bodlin u litin s lupinkovým a kulíčkovým grafitem. Bylo potvrzeno, že i u GJV při obsahu Al nad 200 ppm existuje silná pravděpodobnost vzniku bodlin a to prakticky bez ohledu na vlhkost formovací směsi. Byl však nalezen velký rozdíl mezi množstvím bodlin při modifikaci litiny ve formě a v pánvi. Více bodlin vznikalo při modifikaci v pánvi, při které se používalo větší množství modifikátoru a vznikalo i více reakčních zploďin. To se projevilo i na různém vzhledu bodlin při zkoumání na SEM. Z morfologie vady jsme zjistili, že se jedná o exogenní mechanizmus tzv. vodíkové bodliny. U litinových odlitků, bez ohledu na tvar grafitu musíme obsah Al udržovat nízký a nepřekračovat hranici 0,01 %. Mnohé slévárny mají dobré zkušenosti s přidáváním uhlíkatých přísluš na podporu vzniku bodlin. Za účelem potlačení výskytu bodlin jsou doporučovány i moderní uhlíkaté příslušky s vyšší koncentrací nosičů lesklého uhlíku.

Způsob zjištění vady: VK

10.3 Skupina vad 430 : ODVAŘENINY

ODVAŘENINY OD FORMY (JÁDRA) (431)

Schéma vady
Popis vady

Odvařeniny od formy tvoří většinou otevřené, hladké dutiny na povrchu odlitku, nejčastěji se zoxidovaným povrchem. Vyskytují se velmi často v různých koutech odlitku, kde je forma obklopena kovem a navíc bývá toto místo méně upěchované. Další druh povrchových odvaření od formy se může vyskytovat na kterékoliv ploše odlitku a vyznačuje se plochým, dolíčkovitým tvarem. Povrchové odvařeniny v koutech odlitku jsou často kombinovány s připečeninami a povrch dutin má velkou členitost.

Různý charakter a tvar může mít odvařenina od jádra. Podle velikosti jádra, druhu formovacího materiálu, intenzity vývoje plynů ap., může dojít k úplnému "vyvaření formy", ale také k vytvoření bublin v některých místech odlitku. Silné odvaření od jádra je často doprovázeno vyhazováním kovu z otevřených nálitků nebo výfuků.

Charakteristika vady

Velice nebezpečnými místy na odlitku jsou různé kouty tvořené vystupujícími hranami písku. Čím jsou tyto pískové výstupky hlubší, tím větší je nebezpečí povrchových odvařenin, protože tato místa se snadno prohřívají a krystalizace je zpomalena. Navíc jsou tato místa formy málo zhuštěná - "řídká" a současně v dutině formy dochází k velkému objemu plynů. Proto právě v těchto místech je častý výskyt povrchových odvařenin. Nejnebezpečnější jsou syrové formy, kdy při styku kovu s formou dochází k okamžitému vývinu vodní páry.

Příčinou vzniku odvaření od jádra je proniknutí vznikajících plynů z jádrové směsi do kovu v důsledku znemožnění jejich odvodu odvzdušněním jádra, nebo jeho nedostatečnou prodyšností. Nejčastějšími důvody jsou:

- neprovedení, nebo špatné provedení odvzdušnění jádra,
- zalití odevzdušňovacích kanálků jádra kovem,
- zlomení jádra a přerušení možnosti odvodu vznikajících plynů do okoli,
- celkově nedostatečná prodyšnost jádra,
- nevhodné složení směsi pro výrobu jádra a nevysušený nátěr jádra.

Způsob zjištění vady: VK
ODVAŘENINY OD CHLADÍTEK A ZALÉVANÝCH PŘEDMĚTŮ (412)

Schéma vady

Popis vady

Charakteristika vady

Způsob zjištění vady: VK
ODFVAŘENINY OD VMĚSTKŮ (413)

Schéma vady

![Diagram of vady](image)

Popis vady

Vada má stejný vzhled jako bubliny (skupina 410) nebo odvařeniny (vady 431 a 432), avšak vždy jsou provázeny exogenní nebo sekundární struskou nebo zdrobeninami.

Příčiny vzniku vady

Vznik odvaření od zdrobenin formy nebo jádra je jednoznačný a souvisí s uvolněním vodní páry nebo plynů obsažených v syrové formovací směsi nebo pojivu směsi s umělými pryskyřicemi. Vznik odvaření od strusky má mechanismus komplikovanější a souvisí s reakcí tekutého kovu. Odvařenina vzniká v místě zachycení vměstku ve formě při plnění kovu. Oxidační reakce v tekutém kovu vedou ke vzniku tuhých nebo tekutých oxidů a pak plynů (bublin) [1]. Lokální odvaření u ocelových odlítků v místě ulpění vměstku (např. sekundární strusky) na povrchu formy lze vysvětlovat místně nízkým obsahem Al v oceli. Čelo proudu kovu protékajícího formou může v důsledku reoxidačních procesů ztratit potřebný přebytek dezoxidačního prvku, který by eliminoval přísun kyslíku z vodní páry. Tak může proběhnout chemická reakce mezi kyslíkem a uhlíkem a následně vytvoření oxidu uhelnatého, který se vyloučí u oceli ve formě bublin (bodlin). U neželezných kovů tuto vadu najdeme jen zřídka.

Způsob zjištění vady: VK

10.4 Skupina vad 440: STAŽENINY

Tato skupina vad patří k vadám, které převážně vedou k vyřazení odlítku jako zmetku. Staženiny ve všech podobách patří k nejčastěji se vyskytujícím vadám u všech kovů a slitin. Jsou ovlivněny objemovým smršťováním, které je průvodním jevem přechodu tekutého kovu do pevné krystalické fáze. Působí na ně celá řada činitelů a to činí ze stažení velmi nepříjemné vady. Staženiny jsou ostrohranné dutiny, které zmenšují průřez součásti a výrazně snižují mechanické vlastnosti materiálu, zejména plastické vlastnosti.
OTEVŘENÉ STAŽENINY (414)

Popis vady

Vnější otevřené dutiny zpravidla s hrubě krystalickým, zoxidovaným povrchem, zasahujícím do určité hloubky v odlitku. Objevuje se pod nálitkem po jeho odstranění (kdy spodní část soustředěné staženiny v nálitku zasahuje do odlitku), nebo v místě tepelného uzlu, který nebyl zneškodněn. Pokud staženina vystoupí na povrch odlitku, jedná se o otevřenou (povrchovou) staženinu.

Charakteristika vady

Staženina je výsledkem fyzikálního pochodu zmenšení objemu kovu (stahování) při jeho tuhnutí. Vadou se stává v případě, nachází-li se staženina v odlitku. Objevuje se v různých částech odlitku, kde kov ztuhal jako poslední. Jsou to nejčastěji tepelné uzly, které rozlišujeme jako konstrukční nebo technologické. Příčinou vzniku otevřené staženiny je nedostatek taveniny pro doplnění jeho úbytku během tuhnutí odlitku. Staženinám můžeme zabránit přijetím technologických opatření, která vedou k usměrněnému tuhnutí odlitku [9]. Usměrněným tuhnutím se rozumí takový způsob tuhnutí, při kterém kov tuhne postupně od nejvzdálenějších míst s největší relativní tloušťkou ke místu s nejmenším relativní tloušťkou, ke které umisťujeme nálitek. Tak aby se staženina vytvořila v něm, tzn. mimo odlitek [18].

Vznik staženin ovlivňuje:

- nevhodné nálitkování tepelného uzlu nebo tlustší stěny odlitku,
- nedostatečný objem nálitku vzhledem k objemu odlitku nebo jeho části, do které dosazuje,
- nedostatečný průřez nálitku k rozměru tepelného uzlu v odlitku,
- nedolití nálitku (nebo opožděné dolití); týká se velkých nálitků,
- nedostatečné tepelné ošetření hladiny kovu v otevřeném nálitku,
- přelití otevřeného nálitku,
- vysoká lící teplota kovu.

U ocelových odlitků a bílé litiny je staženina větší než u jiných materiálů. U grafitických litin se vlivem změnění objemu taveniny grafitizace zvětšuje objem při tuhnutí.
a tím se staženina zmenšuje. Proto při výrobě odlitků ze šedé litiny nemusíme odlitky nálitkovat nebo se používaní menší nálitky nebo někdy výfuky. Důležitý vliv na objem staženiny u grafitizujících slitin má však pevnost - tuhost formy. Čím je tuhost formy větší, tím je větší odpor vůči zvětšení objemu odlitku při grafitizaci a výsledné snížení objemu kovu je menší. Toto platí zvláště při výrobě odlitků z LKG. Při vhodné konstrukci odlitku a teplotě lité lze jeho homogenitu zajistit zcela bez nálitkování, což je výroba s největším ekonomickým efektem. Preventivním opatřením je kontrola navržené technologie pomocí simulací programů s využitím některého modulu na predikci staženin [21]

Způsob zjištění vady: VK

VNITŘNÍ UZAVŘENÉ STAŽENINY (442)

Schéma vady

Popis vady

Vnitřní uzavřené staženiny jsou dutiny uvnitř odlitku, nacházejí se v místě tepelného centra, nebo pod přemostěnou (ztuhlou) části napájecí stěny odlitku s přerušeným dosazováním kovu do spodních částí odlitku. Nacházejí se v horní poloze odlitku (stěny, uzlu). Mají nepravidelný tvar, ovlivněný rozdílnou intenzitou odvodu tepla od stěn a hran formy, zaústění vtokové soustavy ap. Na jejím neoxidovaném povrchu jsou viditelné dendrity s rozdílnou velikostí. To lze zjistit až po destrukci odlitku např. řezáním. Vnitřními staženinami lze také označit sekundární staženiny - řediny, nacházející se pod primární soustředěnou staženinou v nálitku a které zasahují až do odlitku. Tyto vnitřní staženiny tuhnu rovněž za podtlaku.

Charakteristika vady

Staženiny uvnitř odlitku vznikají, podobně jako otevřené staženiny, zmenšením objemu kovu při jeho tuhnutí. Tvoří se v místě zesílené tloušťky stěny, ve spoji stěn a případně napájecích hran formy, nebo v místě jinak vzniklým tepelným uzlem odlitku, které tuhne později než jeho okolní oblast, a které není napájeno po celou dobu tuhnutí tekutým kovem a není zajištěno využitím chladitky. Hlavní vliv na vznik vnitřních uzavřených staženin má nevhodná konstrukce odlitku. Ze slévárenských technologických zásad, umožňujících vznik vnitřních stažení jsou to dále:

- nevhodná poloha odlitku ve formě, při níž je většina tepelných uzlů ve spodní části formy;
- nedostatečný objem a nevhodné umístění nálitků nad tepelnými uzly (ne všechny tepelné uzly jsou zneškodněny nálitky);
- nevhodné umístění vtokové soustavy, např. zaústění zářezů do masivní nenálitkované části, čímž se tepelný uzel ještě zvětší;
nezajištění podmínek pro usměrněné tuhnutí odlitku. Nevyužíváme možnost použit ke zneškodnění tepelných uzlů chladítek a technologických přidavků.

Preventivní opatření je stejné jako z otevřených stažení tj. kontrola navržené technologie pomocí simulačních programů s využitím některého modulu na predikci stažení Krutiš [19]

Způsob zjištění vady: RTG

ŘEDINY (443)

Popis vady

Řediny („řídká místa“) lze charakterizovat jako drobné staženiny vyskytující se v tepelném uzlu nebo v tepelné ose odlitku a vznikají v konečné fázi tuhnutí. V odlitku tvoří zpravidla místní shluky nebo řetězce ředín po délce či výšce odlitku v jeho tepelné ose. Shluky ředín se tvoří v tlustších stěnách nebo spojích, v lokálním tepelném uzlu odlitku, vytvořeném např. zaústěním zářezu vtokové soustavy, v místech středového pravého jádra (tyto řediny se také někdy označují jako staženiny od jader) ap. Řediny vytvářejí řídká místa ve stěně odlitku, z nichž mohou vycházet tenké kapiláry až k povrchu, takže činí stěnu odlitku porézní, což se projevuje prosakováním kapaliny při tlakových zkouškách.

Charakteristika vady

Podélné řetězce ředín vznikají rovněž v tepelných osách odlitků s rozlehlými stěnami, když silně převažuje délka nebo výška nad tloušťkou stěny. V tom případě není možno pokrýt celý odlitek působností náhlině, takže stěna odlitku tuhne současně. Řediny se vyskytují také mezi příliš vzdálenými náhlině, v oblasti mimo dosah jejích akční působnosti, nebo se vyskytují pod soustředěnou staženinou v náhlině.

Tak jako u stažení, je přičinou vzniku ředín objemové smršťení kovu při tuhnutí a nedokonale vyřešená konstrukce odlitku i technologicky nezajištěné podmínky pro dokonale usměrněné tuhnutí. Na tyto vady jsou citlivé tenkostěnné hliníkové odlitky vyráběné tlakovým lítím. Preventivní opatření navrhli Stunová [19] a Čech [20]. Ředina vzniká v odlitku již při mřížní poráním rozložení teplot v jeho průřezu (při nehomogenním teplotním poli), zaústění zářezu, místním přehřátí formy, prohřátím pravého jádra, hrany formy, rozdílu v tloušťce stěny ve směru k náhlině ap.
U odlitků z litiny s lupínkovým grafitem tvoří významný vliv chemické složení litiny a to v závislosti na eutektickém množství grafitu. U tenkostěnných odlitků v syrových formách má vyšší eutektické množství grafitu příznivý vliv. U odlitků o větších tloušťkách je však situace obrácená a zvýšení eutektického množství grafitu působí zřetelně nepříznivě. Velmi často se hledají příčiny výskytu ředin v kvalitě surovin, především surového železa a ve vlivu prvků a plynů v něm obsažených na grafitizaci, který se může "dědit" i po přetavení surového železa na litinu. Dalším důvodem vzniku ředin je obsah plynů a nekovových vměstků v litině [4]. Z plynů je nejnebezpečnější vodík.

Způsob zjištění vady: RTG, UZD, ZPR

STAŽENINY (ŘEDINY) OD JADER NEBO HRAN FORMY 444)

Schéma vady

Popis vady

Jde o vnitřní uzavřené staženiny (vada 442) nebo řediny (vada 443) způsobené smršťováním kovu při tuhnutí, soustředěného do oblasti tepelného uzlu, vytvořeného prohřátým pravým (vnitřním) jádrem nebo ostrou hranou formy. Podmínky pro vznik staženiny nebo řediny se řídí velikostí zalitého jádra, jeho schopností odvádět teplo a stupněm vlastního prohřátí.

Charakteristika vady

Podmínky pro vznik staženiny v odlitku od jádra nebo hrany formy jsou určeny vzájemnou výměnou tepla mezi oběma tělesy - tuhnutou a ochlazující. To vystihuje poměr jejich vzájemně velikosti, např. poměr modulů. Pravé jádro nebo hrana formy se vlivem silného tepelného toku z odlitku a vlastní malou tepelnou akumulační schopností prohřeje v krátké době na vysoké teploty, čímž se silně naruší teplotní pole odlitku v daném místě; prodlouží se doba jeho tuhnutí vůči ostatním částem a tepelná osa odlitku se posune bliží k jádru nebo hraně formy. Vznikne tak technologický tepelný uzel, ve kterém, jako v posledně tuhnuté oblasti (bez dosazování), vznikne buďto staženina, nebo řediny. Většinou jde o kombinaci obou vad.

Čím menší je jádro, nebo když je vyrobeno z materiálu s nižší hodnotou součinitele tepelné akumulace [22], nebo čím je ostřejší hrana formy, tím jsou tyto poměry výraznější a v odlitku vznikne větší vada - staženina. U méně výrazných tepelných podmínek (větší jádro nebo větší zaoblení hrany) vznikají řediny. Obě tyto vady zpravidla vyúsťují až k povrchu odlitku.

Jde-li o odlitek, v němž dochází při chladnutí k smršťovacímu napětí vlivem odporu formy (odlitech tvaru U), potom snadno dojde v koutu odlitku (kde se nachází staženina)
k trhlině. Je to logické, neboť v tomto místě je odlitek v průřezu zeslaben a má zde také nejvyšší teplotu a tím i nejnižší pevnost (k trhlině dochází vlivem smrštěvání, tedy při vysoké teplotě). Kromě toho vady v koutu odlitku působí vrubovým účinkem.

Způsob zjišťování vady: VK

POVRCHOVÉ PROPADLINY (PROHLUBENINY) (445)

Schéma vady

![Schéma vady](image)

Popis vady

Místně propadlý, celistvý povrch odlitku na horní ploše konstrukčního nebo technologického uzlu, zpravidla v tlusté nenálitkované části stěny nebo nad tepelným uzlem. Často se tato dutina vyskytuje také na horní ploše otevřeného nálitku i na vrchliku uzavřeného nálitku. Pod propadlinou bývá menší nebo větší uzavřená staženina.

Charakteristika vady

Mechanizmus vzniku této vady spočívá ve vzniku podtlaku v dutinách tvořících se při objemovém smrštěvání kovu. Po naplnění formy kovem, nastává přenos tepla z odlitku do formy a tím začíná tuhnutí. Kolem celého povrchu odlitku se tak vytvoří pevná vrstva kovu. Tepelný uzel tuhne delší dobu, než ostatní části a proto se zde může vytvořit staženina. Jelikož během tuhnutí není tato část napájena tekutým kovem, staženina se zvětšuje. Hladina kovu v tvořící se staženině klesá, oddělí se od horní ztuhlé vrstvy, takže její další růst se přeruší. V důsledku zamezení působení atmosférického tlaku vzdachu vzniká ve staženině podtlak, který stahuje dosud vysoce přehřátou plastickou povrchovou vrstvu dolů a současně na ztuhlou kůru působí atmosférický tlak, takže na vnější horní ploše odlitku se vytváří místní propadlina (prohloubenina). Hloubka poklesu stěny se řídí velikostí staženiny i podtlaku v ní. Pod soustředěnou staženinou (při tuhnutí za podtlaku) se mohou vyskytovat ještě sekundární malé staženiny - řediny. Existence podpovrchové staženiny nebo řediny i hloubka propadliny se také řídí výškou (tloušťkou) odlitku nebo jeho zesílené části. K tomuto jevu dochází u všech kovů a slitin,

Vznikne-li propadlina v nálitku, znamená to, že nálitek nefunguje, jak by měl, nýbrž kov v něm tuhne za podtlaku. Přičinou je špatná tepelná izolace hladiny okamžitě po odlití, která v tomto případě ztuhla, uzavřela spojení s atmosférou, takže nastal stejný případ jako výše objasněný; u uzavřeného nálitku nefungovalo správně atmosférické jadérko (nebo zde nebylo vůbec vloženo). K uvedené vadě dochází u odlitků ojediněle a také ne pod každou propadlinou je velká vnitřní staženina, ale nemusí tam být zcela homogenní (zdravý) odlitek.

Způsob zjišťování vady: VK
PLYNOVÉ STAŽENINY (446)

Schéma vady

Popis vady

Plynové staženiny jsou dutiny vyúsťující až na povrch odlitku, přičemž okraje dutin jsou vlivem průchodu plynu hladké. V hlubší části dutiny lze pozorovat dendritickou strukturu charakteristickou pro staženiny. Plynové staženiny se vyskytují v místech vysoce přehřátých tenkých jader, ostrých hran formy ap., kde je doba tuhnutí odlitků delší, čímž jsou vytvořeny podmínky pro vznik staženin nebo ředin.

Charakteristika vady

Způsob zjištění vady: VK

10.5 Literatura

Třída vad 400: Dutiny

Σ Shrnutí pojmů kapitoly

– Je uvedeno v části „Členění kapitoly“

❓ Otázky k probranému učivu

– Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

132
11 TŘÍDA VAD 500: MAKROSKOPIČKÉ VMĚSTKY A VADY MAKROSTRUKTURY

Členění kapitoly
✓ Skupina vad 510: STRUSKOVITOST
✓ Skupina vad 520: NEKOVOVÉ VMĚSTKY
✓ Skupina vad 530: MAKROSEGREGACE A ODMÍŠENÍ
✓ Skupina vad 540: BROKY
✓ Skupina vad 550: KOVOVÉ VMĚSTKY
✓ Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

• Charakterizovat vadu Sekundární struskovitost.
• Charakterizovat vady ze skupiny Nekovové vměstky (Zadrobeniny, Rozplavený písek).
• Charakterizovat vady skupiny Nekovové vměstky (Oxidické a Grafitové pleny).

Výklad

Třída vad 500 byla pojmenována Makroskopické vměstky proto, aby se explicitně vyjádřilo, že sem nepatří mikroskopické vměstky, které řadíme do třídy 600. Byla vytvořena samostatná skupina vad, která zahrnuje segregace a vycezeniny. Zařazení vycezenin známých z odlévání ingotů mezi vady odlítků je novinkou vzhledem k dosud známým klasifikacím.
11.1 Skupina vad 510 STRUSKOVITOST

STRUSKOVITOST EXOGENNÍ (511)

Schéma vady

Popis vady

Otevřené (povrchové) nebo uzavřené (vnitřní) dutiny ve stěně odlitku, které jsou úplně nebo částečně vyplněny struskou. Jedná se o strusku exogenní, tj. takovou, která vznikla při metalurgickém procesu výroby tekutého kovu a do odlitku se dostala z licí pánve. Nejedná se tedy o struskové produkty vznikající sekundární oxidací kovu v kterékoliv fázi odlévání. Exogenní struska je z hlediska složení homogenní, na rozdíl od heterogenní strusky vznikající při reoxidačních procesech ve formě. Protože struska má menší hustotu nežli tekutý kov, má snahu vyplavat k povrchu a nacházíme ji proto nejčastěji v horních částech odlitku, nebo tam, kde se může přilepit ke stěně formy nebo jádra. Struska je dobře viditelná na surovém odlitku, po otryskání nebo jiném očistění není struska do odlitku zapečena, povrch vzniklé dutiny (prohlubně) je hladký a může se zaměňovat s jinými vadami – bublinami nebo zadrobeninami. Četnost a výskyt exogenní struskovitosti úzce souvisí se způsobem lití. Podstatně častější je výskyt strusky při lití horem z pánví s hubičkou, které se používají ve slévárnách litiny.

Charakteristika vady

Struska provází každý metalurgický proces a s výjimkou některých zcela specifických technologií je vždy součástí tekutého kovu v pánvi. Je tedy rozhodující způsob lití, druh použité pánve, vtokové soustavy, případně jiné zbytky, kterými zabraňujeme proniknutí strusky s kovem do formy. Ve slévárnách, kde je používána pánve s spodní výpustí je nebezpečí vniknutí strusky s kovem malé, naopak ve všech případech, kdy kov vytéká z pánve přes hubičku, vzniká nebezpečí struskovitosti.

Zatím co vtoková soustava u ocelových odlitků plní především funkci rozváděcích kanálů, vtoková soustava u litiny s lupíkovým grafitem musí také plnit funkci lapače strusky.

Jiná situace je např. u litin s kuličkovým grafitem, kde rovněž používáme pánve se spodní výpustí a problematika exogenní struskovitosti je tedy podstatně menší. Při lití přes hubičku zřetelně vidíme v okrajových partiích proudu kovu tmavší vrstvu strháného strusky, které nelze zcela zbránit. Proto jsou u litiny speciální licí jamky, velký význam mají vodorovné rozváděcí kanály, "struskováky" atd. Ve slévárnách se ujalo používání keramických filtrů vkládaných do kanálů vtokové soustavy [1].

Způsob zjištění vady: VK, SEM
SEKUNDÁRNÍ STRUSKOVITOST (512)

Schéma vady

Popis vady

Reoxidační produkty vznikající v kontaktu s vodní parou dutiny formy a v interakci s SiO₂ formy obsahují vysoký podíl MnO (10 - 30 %), jehož přítomnost je vysvětlitelná právě reoxidací kovu. Další oxidy jsou SiO₂ (40 -70 %), Al₂O₃ (5 - 25 %), FeO (3 - 8 %) a další [4].

Obr. 1 Schéma vady na rozhraní forma-kov [2]
1- teplem neporušená formovací směs, 2 – spálená tmavá až černá vrstva silikátů, 3 – odlitek, 4 – reoxidační struska, 5 – otevřená povrchová dutina (bublina); 6 – bílé zbarvení povrchu odlitku i formy; 7 - světle šedá vrstva
Charakteristika vady

Protože sekundární struska je silně heterogenním útvarem, jsou analýzy jednotlivých mist značně odlišné. Velmi dobře můžeme vadu způsobenou sekundární struskou pozorovat pod binokulárním mikroskopem.

Oxidické strusko-plynové vady vznikají i na odlitcích z litiny s lupinkovým i kuličkovým grafitem. Sekundární struskovitost v odlitcích z LKG je důsledkem zpracování kovu hořčíkem. Vznik a výskyt struskovitosti je přímo spojen s druhem použité zpracovací metody výchozího kovu.

Vznik sekundární strusky je průvodním jevem odlévání roztavených kovů a slitin na vzduchu. Tomuto procesu neumíme zabránit, pouze ho různými metalurgickými a technologickými opatřeními můžeme zneškodnit. Při lití ve vakuu je reoxidace nepatrná, v sušené formě nebo samotvrdnoucí směsi s organickými pojivy je podstatně menší nežli ve formě syrové. K reoxidaci totiž dochází reakcí vodní páry s prvky s vysokou aktivitou ke kyslíku, za vzniku oxidů (sekundární struska) a vodíku. Bylo prokázáno, že množství sekundární strusky roste s rostoucí vlhkostí formovací směsi a s růstoucí relativní vlhkostí vzduchu. Při lití do syrových forem musíme předpokládat větší rozsah produktů reoxidace a to jednak nekovových vměstků a jednak povrchových defektů. Stupeň reoxidace a jeho dopad na kvalitu odlitků je u různých litiných kovů odlišný. Nejvýraznější u uhlíkatých a nízkolegovaných ocelí jsou reoxidační pochody v syrových formách. Legované Cr a CrNi oceli vytvárají sekundární oxidací na povrchu tekuté oceli blány oxidů Cr, které zhoršují zabíhavost a jsou přičinou zavalení, výskyt povrchových defektů sekundární struskovitosti je však malý. Bylo prokázáno, že produkty reoxidace obsahují významný podíl MnO. Protože Mn není prakticky obsažen v žádných slévárenských hmotách a látkách, ze kterých je vyrábena forma, vysoký obsah MnO v sekundární strusce je důkazem reoxidace tekutého kovu při odlévání. Protože je podstatný rozdíl mezi množstvím reoxidačních produktů v syrové formě a sušené nebo organické formě na druhé straně, potvrzuje se tím, že rozhodující jsou reoxidační procesy v dutině formy, zatímco reoxidace oceli při vylévání z pece nebo pánve je méně významná. Provedená měření prokázala, že nejnápadnějšími produkty reoxidace jsou MnO a FeO. Protože Mn není prakticky obsažen v žádných slévárenských hmotách a látkách, ze kterých je vyrábena forma, vysoký obsah MnO v sekundární strusce je důkazem reoxidace tekutého kovu při odlévání. Protože je podstatný rozdíl mezi množstvím reoxidačních produktů v syrové formě a sušené nebo organické formě na druhé straně, potvrzuje se tím, že rozhodující jsou reoxidační procesy v dutině formy, zatímco reoxidace oceli při vylévání z pece nebo pánve je méně významná. Provedená měření prokázala, že nejnápadnějšími produkty reoxidace jsou MnO a FeO. Protože Mn není prakticky obsažen v žádných slévárenských hmotách a látkách, ze kterých je vyrábena forma, vysoký obsah MnO v sekundární strusce je důkazem reoxidace tekutého kovu při odlévání. Protože je podstatný rozdíl mezi množstvím reoxidačních produktů v syrové formě a sušené nebo organické formě na druhé straně, potvrzuje se tím, že rozhodující jsou reoxidační procesy v dutině formy, zatímco reoxidace oceli při vylévání z pece nebo pánve je méně významná. Provedená měření prokázala, že nejnápadnějšími produkty reoxidace jsou MnO a FeO. Protože Mn není prakticky obsažen v žádných slévárenských hmotách a látkách, ze kterých je vyrábena forma, vysoký obsah MnO v sekundární strusce je důkazem reoxidace tekutého kovu při odlévání. Protože je podstatný rozdíl mezi množstvím reoxidačních produktů v syrové formě a sušené nebo organické formě na druhé straně, potvrzuje se tím, že rozhodující jsou reoxidační procesy v dutině formy, zatímco reoxidace oceli při vylévání z pece nebo pánve je méně významná. Provedená měření prokázala, že nejnápadnějšími produkty reoxidace jsou MnO a FeO. Protože Mn není prakticky obsažen v žádných slévárenských hmotách a látkách, ze kterých je vyrábena forma, vysoký obsah MnO v sekundární strusce je důkazem reoxidace tekutého kovu při odlévání. Protože je podstatný rozdíl mezi množstvím reoxidačních produktů v syrové formě a sušené nebo organické formě na druhé straně, potvrzuje se tím, že rozhodující jsou reoxidační procesy v dutině formy, zatímco reoxidace oceli při vylévání z pece nebo pánve je méně významná. Provedená měření prokázala, že nejnápadnějšími produkty reoxidace jsou MnO a FeO. Protože Mn není prakticky obsažen v žádných slévárenskách hmotách a látkách, ze kterých je vyrábena forma, vysoký obsah MnO v sekundární strusce je důkazem reoxidace tekutého kovu při odlévání.
formy pronikat mezi zrna ostřiva, i když na povrchu odlitku je kov ztuhlý [2]. Je to jedna z možností vzniku vady 213 Hluboké připečeniny. Menší množství sekundární struskovitosti vzniká také v syrové formě s nekřemenným ostřivem.

Protože na plovoucí vměstek sekundární strusky se postupně nalepují produkty reoxidace a fyzikálně-chemických reakcí s formou, je sekundární struska velmi heterogenním útvarem, jak bylo prokázáno provedenými mikroanalýzami. Sekundární struska obsahuje také křemenná zrna, která byla z formy erodována tekutým kovem, nebo jinak uvolněna. Proto také někdy dochází ke sloučení této vady se zadrobeninami (521) [3]. Bylo rovněž prokázáno, že s rostoucím poměrem Mn/Si v oceli narůstá počet a rozsah vad sekundární strusky [2]. To je v souladu s Körber-Oelsenovými diagramy [7], protože při vyšším podílu MnO ve filmu oxidů dochází k intenzifikaci reakce mezi oxidy kovu a SiO₂ formy. Toto vysvětluje také zkušenost, že při použití nekřemenného ostřiva je objem sekundární strusky menší. Poměrně vysoké obsahy Al₂O₃ ve strusce nemohou být pouhými produkty oxidace zbytkového Al v tekuté oceli, ale musí souviset s vyšším obsahem Al₂O₃ z bentonitové formy, v porovnání s formou vyrobenou procesem CO₂. Sekundární struska z CrNi nerezavějící oceli 18/8 obsahuje vysoký obsah iO₂ a Cr₂O₃, ale velmi málo FeO a MnO. Tato struska je málo reaktivní s SiO₂ formy a nevytváří proto nízkotavítelné silikáty. Proto při lití CrNi oceli je podstatně menší výskytt sekundární strusky. Pro vytvoření sekundární strusky je první podmínkou vytvoření reaktivních oxidů FeO a MnO, které intenzivně reagují s SiO₂ formy za vzniku silikátů. Turbulentní proudění kovu v dutině formy tyto procesy podporuje.

Jako prevenci vzniku této vady je vhodný návrh vtokové soustavy, který jednak omezí turbulence v dutině formy a dále podpoří vyplouvání strusky do nálitku. K tomu je vhodné použít modelování tohoto procesu pomocí simulačních programů, včetně použití filtrace kovu [8, 9, 10].

Způsob zjištění vady: VK, SEM, SMI

11.2 Skupina vad 520: NEKOVOVÉ VMĚSTKY

ZADROBENINY (521)

Schéma vady

Popis vady

Otevřené - povrchové nebo uzavřené - vnitřní dutiny ve stěně odlitku, které mohou být zcela nebo částečně vyplněné formovacím materiálem. Jejich vznik bezprostředně souvisí se zadrobením formy nebo jádra.
Charakteristika vady

Ve slévárnách, které vyrábí odlitky do pískových forem, jsou zadrobeniny nejrozšířenější vadou. Je to dáno tím, že se jedná o vadu, která se velmi těžko odstraňuje a také tím, že pracovníci zodpovědní za identifikaci vady řadí mezi zadrobeniny všechny dutiny na odlitku. Mezi zadrobeniny se často zařazuje rozplavený písek, sekundární struskovitost, eroze, odření, sesušit a jiné vady. Vznik zadrobenin navíc souvisí s celým výrobním cyklem ve slévárně a zásobování po tavírně. Zadrobeniny vznikají drobením formovacího materiálu, ale jejich příčinou nemusí být vždy špatná kvalita formovacího materiálu. Situaci však komplikuje skutečnost, že zadrobeniny mohou být kombinovány i s jinými vadaní s bublinami v těsnějším zvětšením dutiny na odlitku.

Některé významné příčiny vzniku zadrobenin lze shrnout do několika bodů:

1) Konstrukce odlitku - ostré hrany, strmné výstupky bez účinku nebo jen s malými účinky zvětšují pravděpodobnost vzniku zadrobenin.

2) Modelové zařízení a využití formovacích rámů - sklon formy k tvorbě zadrobenin zhoršuje nedokonalá povrchová úprava modelu, vynechání zaoblení hran. Omm a kol. [13] zjistili, že zmetky z důvodu zadrobenin statisticky významně rostou se stupněm využití formovacích rámů, jak plošně tak i výškově, se složitostí modelového zařízení a s velikostí průměru formovacího rámu.

3) Vtovorová soustava - zde se především negativně projevuje nepravidelná výběrka tvornicí soustava. Při formování na svrchní do jednotných formovacích směsí je pro ocelové odlitky nezbytné použít zbytkové soustavy pomocí vtokových nálevek, dopadových jader i rozváděcích kanálů. Platí to i pro náročné odlitky ze šedé litiny, např. pro obráběcí stroje. Herian [14] doporučil pro rozměrové velké a náročné odlitky i pro ostatní těžké odlitky ze šedé litiny, neformovat licí kanály do formovacího materiálu přímo, ale nahradit je keramickými trubkami, odstrušovací formovat z modelové směsí a u licích jamek dostatečně prosušovat jejich dna, aby odolávaly erozivnímu účinku nalévaného kovu. Novinkou ochrany licích kanálů jsou trubky a koncovky z celulózy známé pod obchodním názvem HOLLOTTEX EG nebo FG [15]. Jejich výhodou je nízká hmotnost, snadná manipulace a dají se řezat nožem.

4) Formování - hlavními nedostatků jsou nepravidelné upěchování a měkké formy, nedostatečná střežení skla a zahřátí jader, zahřátí nevyfoukaných forem a použití nekvalitní formovací směsi pro výrobu forem. Při použití jednotných formovacích směsí se hlavně pro ocelové odlitky musí použít kvalitní povrchová ochrana licí formy, což se často provádí pomocí různých postřiků [17].

5) Vyroba jader - výskyt zadrobenin roste použitím nedostatečně zhuštěných nebo vytvrzených jader, nekvalitních nátěrů, ponecháním švů na jádřech a zpracováním nevyhovující formovací směsi pro výrobu jader.

6) Pískové hospodářství - bývá označována za hlavního „viníka“ vzniku zadrobenin. Skutečné nedodržování technologického předpisu při přípravě formovací směsi a použití nejakoastých surovin se projeví na znáh výskytu zadrobenin.
Zejména to způsobuje zhoršení těch vlastností formovací směsi, která zhoršují její tekutost a zvyšují osýchání směsi. Graham a kol. [18] prokázal laboratorními zkouškami, že oteři formy závisí na druhu bentonitu, jeho obsahu ve směsi, na době skladování směsi a době skladování forem. Při zvýšení oteří vzorků nad 10% se zvyšuje u odlítek pravděpodobnost vzniku zdrobenin. Velmi nepříznivě se projevuje povrchoví otěr formovací směsi s teplotou nad 35 °C. Tyto poznatky nedávno ověřoval Babic [19].

7) Odlévaní - v tomto úseku se nepříznivě projevuje prodlužování doby odstání hotových forem do lití, odlévání kovu s vysokou líci teplotou a velký rozstřik kovu při lití z pánev a nakapání kovu do formy přes výfuky a nálitky.

Uvedené příčiny zdrobenin jsou všeobecně známé a pokud u některých odlítek dojde ke výšení zmetkovitosti z důvodu zdrobenin, pak se většinou probírají všechny vlivy. Především se tedy kontroluje dodržování technologické kázně.

Způsob zjišťování vady: VK

ROZPLAVENÝ PÍSEK (522)

Schéma vady

Popis vady

Četné otevřené - povrchové nebo uzavřené - vnitřní dutiny ve stěně odlitku, zcela nebo částečně vyplněné pískem. Na rozdíl od zdrobenin se takové dutiny vyskytují na jednom odlitku na větších plochách.

Charakteristika vady

Vada je způsobena velkým otěrem formy nebo jádra, erozi ve vtokové soustavě po vstupu kovu do formy a při jeho proudění v ní. Příčiny vzniku rozplaveného písku jsou v mnoha bodech shodné se zdrobeninami - jsou to ostré hrany ve formě, členitá forma, nekvalitní provedení formy a jader, vysoká líci teplota kovu a to vše spojeno s prudkým nárazem kovu do formy a jeho turbulentním prouděním. K rozplavenému písku můžeme zařadit i rozplavený keramický materiál, který pochází z nekvalitního filtračního keramického filtru.

Způsob zjištění vady: VK
ODPADNUTÝ NÁTĚR (523)

Schéma vady

![Schéma](image)

Popis vady

Otevřené nebo uzavřené dutiny ve stěně odlitku, zcela nebo částečně vyplněné zbytky nátěrové hmoty (a) (barvivem nebo námazkem). Na některých místech se odpadnutý nátěr formy (jádra) může projevit nárostem na povrchu odlitku (b)[37].

Charakteristika vady

Nátěrové hmoty pro povrchovou ochranu pískových forem a jader při odlévání ocelí i grafitizujících slitin mají zabraňovat pronikání kovu a jejich oxidů do formy a zlepšovat povrchovou kvalitu odlitku. U nátěrů forem pro lití oceli se klade důraz na vytvoření ochranné keramické bariéry v podobě celistvé mezivrstvy nebo keramických ucpávek v pórech podkladu [20]. U nátěrů pro odlévání výborně zabíhající šedé litiny nelze spoléhat na stejný mechanizmus, že sám o sobě zabezpečí potřebnou hladkost povrchu litinového odlitku. Kromě ochranného bariérového účinku se vytvoří redukční atmosféra plynového protitlaku a lesklého uhlíku. K oddělení nátěru může dojít různými způsoby [20]:

- Odloupnutím části vrstvy tlakem plynů následkem velké plynotvornosti nátěru, při velkých tloušťkách povlaků a při jejich nízké prodyšnosti. Tento způsob nazvaný „plynovým“ zálupem je podporován zvýšeným tlakem plynů v jádře (formě) a jejich nedokonalým odvodem z formy.
- Dilatačním pnutím v povlaku a podkladu se snižuje přilnavost nátěru. Hovoříme tak o expanzních zálupech (odloupnutích).
- Erozí za horka, která vzniká smytím povlaku proudícím kovem, zvláště u silnostěnných odlitků a při nevhodném vtokovém systému. Sekundárním projevem eroze je hrubý povrch odlitku, přecházející v zapečeniny a výskyt vměstků. Sklon k tomuto způsobu odpadnutí se zvyšuje u tenkých vrstev povlaku a při jeho vysoké smáčivosti taveninou, při nízké přilnavosti povlaku k podkladu a málo pevném podkladu, při nízké pevnosti za horka v povlaku a při použití rychle tepelně se rozkládajícího pojiva.

Způsob zjištění vady: VK
Třída vad 500: Makroskopické vměstky a vady makrostruktury

OXIDICKÉ PLENY (524)

Schéma vady

Popis vady

Plošné, tenké filmy oxidů vznikající na volném povrchu taveniny během odlévání a zalitých následkem turbulence kovu v povrchových vrstvách i vnitřní jen odlitku. Označují se též jako blány a kůže. Podle svého složení a složení lice formy mohou, ale nemusí chemicky reagovat s materiálem formy. Ulpívají však na stěnách formy a jader a významně zhoršují povrchovou i vnitřní jakost odlitku. V rozboroch nesohodných odlitků se tato vada objevuje u slitin hliníku na prvních místech v pořadí. Méně častý výskyt je u slitin železa.

Charakteristika vady

Oxidické pleny vznikají následkem procesů tavení kovů a slitin v peci a sekundární oxidace (reoxidace), které probíhají na volném povrchu taveniny během odlévání a plnění formy. Pro svou vysokou viskozitu a převládající plošný rozměr vytvářejí často rozsáhlé shluky na povrchu i pod povrchem uvnitř odlitku. Sekundární oxidace je průvodním jevem odlévání téměř všech kovů a slitin, ale u každého kovu má jejich tvorba své zvláštnosti. Tato vada je nebezpečná tím, že narušuje homogenitu odlitku a zhoršuje mechanické vlastnosti kovu. Oxidické pleny mohou iniciovat další vady odlitků - trhliny při tuhnutí odlitku a bubliny.

Slitiny hliníku - Nejvíce náchylné k vzniku oxidických plen jsou slitiny Al-Mg, kde kromě Al₂O₃ vzniká i MgO. Prevenci a potlačení vzniku oxidických plen v odlitcích Al slitin je věnována řada prací, z nichž nejznámější jsou publikace Campbella [21, 22], Crepeau [23]. Campbell konstatoval, že povrch tekutého kovu bývá normálně pokryt oxidickým filmem, i když za určitých okolností to mohou být i jiné typy filmů. Pokud rychlost taveniny přesáhne určitou kritickou hranici, existuje příležitost k tomu, že tyto filmy se skládají na sebe a zahrnou se v objemu tuhnoucí taveniny. Campbell nazývá tyto na sebe složené filmy jako „bifilmy“, proto aby zdůraznil jejich dvojí skládaný charakter. Protože filmy jsou skládány na sebe suchou stranou, mají tato dvě malá rozhraní nízkou nebo žádnou vazebnou schopnost, takže dvojitý film působí jako trhlina. Trhliny (alias) bifilmy zatuhnou v odlitku a snižují pevnostní nebo únavové vlastnosti. Bifilmy také mohou tvořit štěrbiny ve stěně odlitku a způsobit průsaky. Většina odlitků obsahuje miliony těchto vad, které i když nebyly žádané, jsou prakticky neviditelné z důvodu jejich extrémní jemnosti obvykle měřené v mikrometrech nebo nanometrech. Pomocí bifilů lze vysvětlit řadu problémů ve slévárenství jako je tvorba porovitostí způsobené plynů nebo stahováním, trhliny za tepla, pokles mechanických vlastností a určitě též snižují i odolnost proti korozii. Poprvé lze pomocí bifilů vysvětlit tvorbu struktury litéch dílů, jako mechanismus modifikace slitin Al-Si a velmi pravděpodobně i křehnutí ocelí dusíkem nebo sirníky 3 typu. Bifilm se tvoří v povrchových vrstvách způsobených turbulence proudu. Tento proces je tak rychlý, že trvá několik milisekund, kdy nově se tvořící oxidy nemají prakticky čas pro další růst. Mnohé z nich jsou tak jemné, že jsou prakticky neidentifikovatelné a jeho dvě strany mají tloušťku kolem 20 nm. Ptáček [24] rozlišuje oxidně (pleny) podle jejich vzniku. Oxidy vytvořené na hladině taveniny...
v kelímku jako „staré“ a oxidy vznikající při lití jsou „mladé“ oxidy. To koresponduje s Cambellem v tom, že suché oxidy bifilmy staré a tekuté oxidy bifilmy mladé.

U l i t i n o v ý c h o d l i t ků jsou to produkty sekundární oxidace kovu při operacích mimopécí úpravy kovu (zejména očkování a modifikace). Oxidy jako nekovové vměstky často nacházíme také ve spojení s plynovými bublinami a to u litin s kuličkovým grafitem. U litin s kuličkovým grafitem při reakci Mg s taveninou vzniká velké množství reakčních produktů a také MgO, který je velmi jemně rozptýlen, takže nekoaguluje a neobjevuje se tudíž na povrchu odlitku. Při tuhnutí se shromažďuje na krystalizační frontě a narušuje celistvost struktury [25]. Pro tento vměstek je charakteristické, že se zvětšuje právě na grafitových blanách a velmi negativně ovlivňuje zejména únavové vlastnosti materiálu. Pleny, jejichž hlavními složkami jsou oxidy na bázi křemíku, hořčíku a železa, způsobují také [25] lokální vylučování pro tvárnou litinu anomálních tvarů grafitu (lupinkového, řubíkovitého a pavoučkového), na úkor grafitu zrnitého.

U o c e l o v ý c h o d l i t ků se s těmito vadami setkáváme nejčastěji při odlévání vysokoelitovění chromových a chromniklových ocelí s přísadou titanu. Objevují se však i když méně častěji u odlitků z nelegovaných ocelí. Oxidické pleny zde mohou působit jako zdroj trhlin při tuhnutí odlitku.

Způsoby zjištění vady

Na povrchu otryskaného odlitku se projevují jako dutiny nebo důlky a obtížně se pak rozlišují od zadrobenin nebo i bublin. Uvnitř odlitku zhoršují zejména mechanické vlastnosti materiálu, ale jejich identifikace bývá snadnější, protože se zde nachází v celistvé podobě.

Na obroběm povrchu odlitku se zpravidla najdou až pomocí lupy, zřídka v případě jejího zvětšení. Oxidické pleny se vcelku spolehlivě rozpoznají na lomech mechanických zkoušek odlitků, a to buď pomocí lupy, nebo pozorováním pod stereo-mikroskopem. K jejich spolehlivé analýze podle chemického složení lze použít metodu SEM.

UHLÍKOVÉ PLENY (525)

Schéma vady

![Schéma vady](image)

Popis vady

Tenké, lesklé uhlíkové nebo grafitové pleny, zvrásněné, zřetelně ohraničené, nacházející se na povrchu nebo i ve stěně odlitku. Zpravidla jsou vidět jen na lomu nebo metalografickém výbrusu, připraveném napříč vadou. Na povrchu odlitku se vada projeví jemnými trhlinkami vyplněnými uhlíkem.

Charakteristika vady

Atlas vad odlitků CIATF uvádí možný výskyt této vady (G 143) u všech slitin železa odlévaných do pískových forem [26] tzn. u všech druhů litin a i u ocelí. Novější poznatky o této vadě uvádí Hasse [27], najdeme je v příručce vad odlitků firmy IKO [28] a zejména pak u R.L.Nara [29]. Vada je příznácná pro litinové odlitky odlévané do formovacích směsí
Třída vad 500: Makroskopické všestky a vady makrostruktury

s uhlikatymi príslušadami, pro odlitky s jádry vyrobenými pomocí organicích pojiv a hojně se objevuje také u odlitků odlévaných technologií „plně formy“, tj. s využitím modelů z pénového polystyrenu. Překlad názvu vady z anglické, francouzské a německé literatury by přesně byl „Pleny (filme) lesklého uhliku“. Produkty termické degradace původních uhlikatých látek jsou obecně označováni jako pyrolyzní uhlik. (Buchtele [30]). Podle uspořádanosti pyrolyzních uhlíků vzniklých z uhlikatých materiálů lze sestavit řadu → amorfní uhlik (saze) – koks – lesklý uhlik – (grafit). Podle uspořádanosti lze hodnotit oxireaktivitu daného produktu, to je stanovit jeho reaktivitu vůči kyslíku a nejnižší má tudíž lesklý uhlik. Jeho přítomnost na rozhraní forma-kov je záruckou metalofobnosti slévárenské formy i v podmínkách syrové slévárenské formy.

Uhlovodíky přítomné v příslušedách, nebo pojivech formovacích směsí, popř. v dalších složkách forem a jader nejprve pod účinkem odlévané slitiny zplyňují. Poté se za vysokých teplot stěpí za vzniku pyrolyzního uhlíku, který vytváří na povrchu turbulentně prudící taveniny pleny. Zda se jedná o lesklý uhlik, grafit nebo amorfní uhlik závisí na teplotním režimu pyrolyzy a na vlastnostech inaktivních ploch, na kterých se daná forma C vylučuje. Pravděpodobně se budou skládat z několika forem pyrolyzního uhlíku. Pleny pak ulípají na stěnách tuhnutého odlitku. Tímto způsobem mohou vzniknout uhlikové pleny i ve slitinách s nízkými obsahy uhliku, v nichž za běžných podmínek tuhnutí nemůže dojít k vyloučení grafitu ve struktuře odlitku. Mohou narůstat do podstatně tlouštěk, a pokud se nerozplatí v tekutém kovu nebo nejsou oxidovány, postupuje tuhnutí proti shluku uhlikových filmů a vzniká charakteristický zvrásněný a lesklý povrch odlitku.

Objasnění vzniku uhlikových plen u odlitků z litiny s lupínkovým grafitem se věnoval také Campbell [31] se spolupracovníky. Prokázali, že na povrchu tekuté šedé litiny se při odlévání do forem z ST směsí s organicími pojivy tvoří filmy lesklého uhliku. Který je mechanicky pevný a celistvý a může přispět k zlepšení povrchové jakosti odlitků z litiny s lupínkovým grafitem. Pokud se turbulence pruží kovu povrchové filmy poruší, vytváří se záhyby a dvojité filmy lesklého uhliku.

Způsob zjišťování vady: Podobný postup jako u lidických plen VK, SEM.

ČERNÉ SKVRNY (526)

Schéma vady

Popis vady

Na lomu černé, na opracovaném povrchu tmavé skvrny nepravidelného tvaru, velikosti od několika mm až několika cm i více. Vyskytují se zejména na stěnách odlitků tlustších než 25 mm, a to v jejich horních částech. Mechanické vlastnosti odlitku v místě vady jsou velmi špatné. Byly zaznamenány u odlitků z litiny s kuličkovým grafitem.
Charakteristika vady

Černé skvrny jsou v mikroskopickém měřítku tvořeny shluky (oblastí) oxidických a sulfidických včetně, které jsou vyloučeny v kombinaci s nedokonale zrnitými, lupínkovými a jinými, částečně degenerovanými tvary grafitu ve struktuře litiny s kuličkovým grafitem. Například v odlitcích pístů z litiny s kuličkovým grafitem o složení (hmotnostní %): 3,36 C; 0,39 Mn; 2,70 Si; 0,035 P; 0,012 S; 0,11 Cr; 0,045 Ni a 0,046 Mg měly černé skvrny zjištěné po opracování velikost 8 až 12 mm [25] a v okrajových částech mikrostrukturu s vysokým podílem grafitu a oxidických i sulfidických včetně. Okolí černých (tmavých) skvrn je mírně oduhličeno a v matrici se objevuje ferit, zatímco struktura nedotčené oblasti litiny s kuličkovým grafitem i uvnitř černých skvrn je perlitická.

Černé skvrny mohou být též provázeny bublinami a v povrchových vrstvách těž bodlinami. V tomto případě svědčí výskyt těchto dutin o lokální uhlíkové reakci za vzniku oxidu uhelnatého (viz vady 410, 420 a 610). V takovém případě je odlitek charakterizován nízkými obsahy zbytkového hliníku (pod 0,02 %).

Způsoby zjišťování vady: VK, SMA, SMI

11.3 Skupina vad 530: MAKROSEGREGACE A ODMÍŠENÍ

GRAVITAČNÍ ODMÍŠENÍ (531)

Schéma vady

![Schéma vady](image)

Popis vady

Gravitační odmíšení je slévárenskou vadou vzniklou u odlitků odlévaných ze dvou slitin odlišného složení, které jsou navzájem zcela nebo částečně nemísitelné v tuhém stavu. Projevuje se jako zřetelné oddělení dvou slitin odlišného složení v odlitku a to nejen ve vertikálním směru (vliv konvekčních proudů).

Charakteristika vady

Hlavní příčinou je přítomnost dvou slitin (složek) s částečnou nebo úplnou nemísitelností v tekutém i tuhém stavu, tzn. nevhodné chemické složení slitiny. Slitiny se po odlití v době tuhnutí rozvrství podle svých měrných hmotností, takže chemické složení v dolních a horních částech odlitku je rozdílné. Tato vada se vyskytuje zvláště u neželezných kovů - bronzů a mosazí. Gravitační odmíšení se zvětšuje pomalým chladnutím a tuhnutím taveniny, tudíž s výšším přehřátím taveniny a s větší tloušťkou odlitku.

Způsob zjišťení vady: Gravitační odmíšení dvou slitin se zpravidla zjistí na obrobené ploše jako různě zabarvená místa odlitků. V místě styku dochází také snadno k oddělení části odlitku při jeho namáhání v provozu. SMA, SMI.
Segregace (odmíšení) jako vada homogenity a struktury odlitku je výsledkem fyzikálního děje selektivního tuhnutí (krystalizace), tzn. tuhnutí taveniny v rozmězi teplot likvidu a solidu, v průběhu určité doby. V průřezu odlitku nebo ingotu dojde k chemické nestejnorodosti – segregaci, v tomto případě v oblasti pásma (zóny) nebo v průřezu celého odlitku (ingotu). Proto o makrosegregaci mluvíme také jako o pásmové nebo zonální segregaci (odmíšení); výrazně vzniká pouze u masivních odlitků a ingotů [32].

Způsob zjišťování vad:

Zjistí se přímým chemickým rozborem materiálu odlitku po ztuhnutí. Úskalím je v tomto případě odběr vzorku z odlitku. Záleží na velikosti vzorku a místě odběru, např. přímo z pásma vycezenin.

STVOLOVÉ VYCEZENINY (533)

Vycezeniny jsou místa zvýšené koncentrace odměšujících prvků, příměsí a nečistot, jakož i zpodin různých reakcí, jež probíhají v kovu při selektivním tuhnutí. Jsou to poruchy homogenity v pravidelné krystalické struktuře, vyplněné matečnou, na příměsi bohatou taveninou. Obsahují zvýšený podíl S, P, C ale také Mn, Mo aj. Vznikají v těžkých masivních ocelových odlitcích a ingotech, kde jsou k tomu tepelné podmínky a podmínky pro segregaci [33].

Názory na vznik stvolových vycezenin nejsou dosud jednotné. Na objasnění vzniku existují dvě teorie [34].

Vznik stvolových vycezenin není omezen pouze na masivní odlitky nebo ingoty. Vyskytují se i v tenčí stěně menšího odlítku nebo pouzdra. Objeví se na vnitřní stěně při opracování většího přídavku (např. technologického). Jejich výskyt se často překrývá, nebo zaměňuje s ředinami pod nálitky umístěnými na horním konci odlítku. Velmi výrazně se rovněž tvoří stvolové vycezeniny v masivních odlitech odlévaných ve svislé poloze nebo v ingotech. Vždy směřují k tepelné ose a k nálitku jako největšímu tepelnému centru v odlítku a vyúsťují ve staženině v nálitku.

Způsob zjištění vady:

Stvolové vycezeniny nelze zjistit na surovém povrchu vizuálně (vyskytují se pod jeho povrchem) a ani je nelze přesně zjistit dosud známými metodami nedestruktivního zkoušení. Jsou dobře viditelné pouze na opracovaném odlítku nebo po destrukci odlítku s využitím Baumannova otisku. Pouze u výrazných kanálových vycezenin lze najít vadu prozařováním RTG nebo ultrazvukem.

MEZEROVÉ VYCEZENINY (534)

Schéma vady

Popis vady

Jsou to vycezeniny, u kterých nečistoty a shluky odmišenin příměsí vyplnily při tuhnutí mezeru a větší dutiny v odlítku, vzniklé jakoukoliv příčinou. Jsou to např. vnitřní trhliny, staženiny, řediny aj. Proto je lze označit kromě mezerových také jako trhlinové, ředinové
vycezeniny. Řadíme je do pásmových (zonálních) vycezenin, osovitých i mimoosových. Charakteristické pro tyto vady jsou tzv. "V" vycezeniny, jež se nacházejí pravidelně v osovitých částech ingotů i asimových odlitků. Jelikož původ osovitých "V" vycezenin spočívá především v poklesu tuhnoucí taveniny gravitací a tím vytvoření trhliny - mezery, označují se "V" vycezeniny také jako gravitační vycezeniny. Od gravitačního odmišení (vada 531) se tyto vycezeniny podstatně liší. Zatímco u gravitačního odmišení dojde k oddělení (rozvrstvení) dvou složek v tekutém stavu vlivem jejich rozdílné hustoty, je gravitační "V" vycezenina vytvořena vyplněním gravitací vzniklé trhliny v odlitku koncentrátem odmišení.

Způsob zjištění vady:

Mezerové vycezeniny v odlitku (osové i mimoosové lze prokazatelně zjistit pouze destrukcí odlitku (v podél ne ose) a zhotovením Baumanova otisku nebo analýzou makrostruktury. Na řezu odlitku bez naleptání jsou viditelné pouze v případě, když vytvářejí řediny tvaru "V". Jinak nelze s jistotou identifikovat V vycezeniny, ani ostatní typy mezerových vycezenin žádnou z nedestruktivních metod. Jde o slabou ostrost indikace těchto vad u masívního tělesa, většinou s hrubozrnnou strukturou, která znemožňuje průnik např. ultrazvukových vln.

11.4 Skupina vad 540: BROKY

Schéma vady

Popis vady

Malé zoxidované kovové vměstky, většinou ve formě kuliček, nacházející se ve spodních částech odlitku. Jejich složení odpovídá složení odlitku.

Charakteristika vady

Broky mohou vznikat při nesprávném vlévání kovu do vtokového systému na začátku lité (vystříknutí) nebo při užití chybně provedených vtoků, které dovolují tříštění proudu. Kapky kovu se přitom usazují v různých místech formy i ochlazují se, zvláště pokud se do těchto míst nedostane ihned tekutý kov. Ochlazené kapky se pak již s průdrem kovu nespojí. V mnoha případech nalézáme broky v plynových bublinách, jejichž rozměry jsou větší než rozměry broku. Broky mohou být unášeny s plynovým obalem do horní části formy a mohou být nalezeny uvnitř odlitku nebo i v otevřených bublinách na povrchu odlitku.

Způsob zjištění vady: VK
11.5 Skupina vad 550: KOVOVÉ VMĚSTKY

Schéma vady

Popis vady

Kovové cizorodé částice různé velikosti, zřetelně odlišné od základního kovu. Zpravidla to jsou neroztavené přísady, feroslitiny, chladítka, podpěrky atp.

Příčiny vzniku vady

Vada vzniká neroztavením kovových předmětů, které se z technologických důvodů vkládají do formy, nerozpustěním feroslitin nebo jiných kovových předmětů a nečistot vnesených do formy.

Způsob zjištění vady

VK obrobených ploch na odlitku, doplněné případně o metalografický rozbor z kritického místa.

Skupina vad 560: NEVYHOVUJÍCVÍ LOM

Schéma vady

Popis vady

Odchylky vzhledu lomu náhodně vybraného či zkušebního odlitku (nebo příliš, popř. odděleně lité zkušební tyče) od stanoveného normálu nebo od lomu připraveného na podkladě sjednaných technických přejímacích podmínek.

Příčiny vzniku vady

Z fyzikálně metalurgického hlediska se podle vzhledu lomu a podmínek vzniku rozlišují lomy tvárné (houževnaté), štěpné (křehké), únavové, korozní pod napětí a lomy při tečení.
Lomy mohou být transkrystalické nebo interkrystalické. Pojem defektního, nevyhovujícího lomu vychází z technických přejímacích podmínek Za jedných podmínek lze lom pokládat za defektní, za jiných nikoliv. Za nežádoucí a zpravidla též za defektní se pokládají:

- z energetického hlediska lomy křehké, probíhající náhle, nestabilně;
- z fyzikálně-metalurgického hlediska lomy nesoucí technologické označení např. lasturový, frézový, mezidendritický aj., neboť detekují odchylky od předepsané metalurgie nebo též slévárenské technologie.
- z hlediska mikromechanizmu vzniku lomy interkystalické, tvárné i štěpné a někdy též transkystalické štěpné, neboť obsahují informace o procesech degradujících obecně dosažitelné dobré chování slitiny, které je představováno tvárným, transkystalickým lomem.

Příčiny defektních lomů jsou neobyčejně rozmanité a často též velmi složité [2].

Způsob zjištění vady: Základní znaky defektního, nevyhovujícího lomu lze zpravidla pozorovat na lomech odlitkům prostým okem, popř. pomocí lupy. Avšak faktografická analýza (DRA) od níž se očekává objasnění příčin defektního lomu, vyžaduje odběr vzorku a prohlídku lomové plochy pod stereomikroskopem a SEM.

11.6 Literatura

Třída vad 500: Makroskopické vměstky a vady makrostruktury

 Shrnutí pojmů kapitoly

- Je uvedeno v části „Členění kapitoly“

Otázky k probranému učivu

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“

12 TŘÍDA VAD 600: VADY MIKROSTRUKTURY

Členění kapitoly

✓ Skupina vad 600: MIKROSKOPICKÉ DUTINY
✓ Skupina vady 620: VMĚSTKY
✓ Skupina vad 630: NESPRÁVNÁ VELIKOST ZRNA
✓ Skupina vad 640: NESPRÁVNÝ OBSAH STRUKTURNÍCH SLOŽEK
✓ Skupina vad 650: ZATVRDLINA, ZÁKALKA
✓ Skupina vad 560: OBRÁCENÁ ZÁKALKA
✓ Skupina vad 670: ODUHLIČENÍ POVRCHU
✓ Skupina vad 680: JINÉ VADY MIKROSTRUKTURY
✓ Třída vad 700: VADY CHEMICKÉHO SLOŽENÍ A VLASTNOSTI ODLITKŮ
 o Literatura
✓ Skupina vad 720 ODCHYLYK HODNOT MECHANICKÝCH VLASTNOSTÍ
✓ Skupina vad 730 ODCHYLYK HODNOT FYZIKÁLNÍCH VLASTNOSTÍ
✓ Skupina vad 740 NEVYHOVUJÍCÍ HOMOGENITA ODLITKU

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

• Charakterizovat vady skupiny Mikroskopické dutiny.
• Charakterizovat vadu Vměstky.
• Charakterizovat vadu Zatvrdlina, zákalka.

Výklad

Třída vad 600 obsahuje 8 skupin vad, z nichž pouze jedna (610) se dále dělí na tři skupiny vad. Vady této třídy jsou převážně odchylkami od norem a sjednaných technických podmínek (neshody) a nikoliv o vady v pravém slova smyslu. Mikroskopické dutiny, oduhlíčení povrchu, vměstky jsou průvodním jevem litého stavu. Existuje celá řada dalších vad, která by se mohla do jednotlivých skupin doplnit, zejména ve skupině 680 Jiné odchylky mikrostruktury.
12.1 Skupina vad 600: MIKROSKOPICKÉ DUTINY

Schéma vad

MIKROSTAŽENINY (SMRŠŤOVACÍ MIKROPÓROVITOST) (611)
MIKROBUBLINY (PLYNOVÁ PÓVITOST) (612)
MIKROTRHLINY (613)

Popis vad

Interkrystalické a traNskrystalické, prostým okem neviditelné dutiny a porušení souvislosti odlitku, které neodpovídají požadavkům norem a technických přejímacích podmínek. Jde o dutiny a porušení souvislosti, jejichž velikost je pod rozlišovací schopnost lidského oka a pohybuje se kolem 0,2 mm. Tyto vady však mohou způsobovat propustnost stěny v odlitcích podrobených tlakové zkoušce a v praxi se pro ně často používá termín „pórovitost odlitku“.

Charakteristika vad

Vady uvedeného typu spojuje do značné míry stejný mechanizmus vzniku, spočívající v nukleaci a růstu dutiny a podruhu vody až po jistý mezní rozměr, ležící pod rozlišovací schopnost lidského oka. Mikroskopické dutiny se dále dělí na:

- 611 mikrostaženiny
- 612 mikrobubliny
- 613 mikrotrhliny

Tyto vady se navzájem liší morfologicky, tj. tvarem a též fyzikální podstatou vzniku. Základní příčiny těchto mikroskopických vad jsou obdobné jako u stejných druhů vad makroskopických rozměrů, tj. stažení, bublin a trhlin.

M i k r o s t a ž e n i y, prostým okem neviditelné dutiny, mají převážně mezikrystalický charakter a vznikají při tuhnutí v místech styku rostoucích dendritů, nebo zrn tuhnucí slitiny. Nejčastěji se tvoří v místech odlitku s omezeným dosazováním kovu a u slitin s velkým intervalem tuhnutí a velkým součinitelům smrštění. Do zbylé mezidendritické taveniny, která se soustřeďuje v místech dendritů, je během tuhnutí současně vyťažována většina doprovodných přísadových prvků a nečistot, které snižují teplotu solidu tuhnucí slitiny a jsou často přičinou tvorby křehkých fází a tím i zdrojem mikrotrhlin.

M i k r o b u b l i n y, bodové drobné dutiny, vznikají při tuhnutí slitiny, a to v patách již dříve ztuhlých dendritů, které jsou nejpríznivějšími místy jejich heterogenní nukleace.
Třída vad 600: Vady mikrostruktury

Vznikají následkem přesycení taveniny rozpuštěnými plyny stejným mechanizmem jako endogenní bubliny, avšak s tím rozdílem, že jejich růstové stádium je omezeno podstatně nižšími koncentracemi ve slitině, než je tomu u rozměrných bublin. Mikrobubliny se mohou tvořit při krystalizaci těžů známosedentrické tavenině a doprovázet tak tvorbu oxidických a sulfidových všedků. Mikrobubliny občas doprovázejí bubliny makroskopických rozmezí a dosti často se vyskytují v kombinaci s mikrostaženinami.

Mikrotrhliny jsou prostým okem neidentifikovatelné trhliny. Představují porušení souvislosti (spojitosti) slitiny, tvořící se převážně po hranicích dendritů, popř. zrn, avšak též uvnitř dendritů a zrn. První, často se vyskytující případ, je příznačný pro tvorbu mikrotrhlin za vysokých teplot, druhý (tj. tvorba mikrotrhlin uvnitř dendritů a zrn) nastává častěji při nižších teplotách a bývá spojen s fázovými transformacemi ve slitině. Mikrotrhliny se často vyskytují v kombinaci s mikrostaženinami, přičemž spojité přechází jedna v druhou a obtížně se odlučují.

Uvedené typy mikroskopických vad nemusejí být vždy příčinou zmetkování odlitků. Velmi nebezpečnými se mohou stát u dynamicky zatěžovaných odlitků, u kterých se stávají hlavní příčinou předčasného únavového porušení a ve spojení s nesprávným tepelným zpracováním se mohou stát hlavní příčinou náhlých, katastrofických lomů konstrukcí.

Obr. 1 Schéma vzniku vad tvořením a zachycováním bifilmů v tavenině [1]:
a) nový bifilm; b) bubliny zachycené jako integrální součást bifilmu; c) tekuté oxidy unášené
bifilmem; d) povrchové úlomky unášené bifilmem; e) pískové všedky;
f) zachycený starý film obsahující úlomky, šumy.

Způsob zjištění vady: RTG, SMA, SMI
12.2 Skupina vady 620: VMĚSTKY

Schéma vady

Popis vady

Mikročistota, která neodpovídá požadavkům norem a sjednaných technických přejímacích podmínek. Pod pojem mikročistoty se zahrnuje vyjádření množství (objemového, popř. plošného), počtu, velikosti tvaru a rozložení vměstků různého chemického složení. Přejímací podmínky případně mohou specifikovat a vyžadovat splnění pouze některých z uvedených kritérií mikročistoty. Mikročistota se převážně hodnotí a vyžaduje u ocelí, zřídka až u litin.

Charakteristika vady

Při posuzování příčin nadměrného znečištění kovu vměstky je třeba vycházet z jejich původu, který může být buď exogenní, kdy jsou do kovu přidány vměstky působením okolního prostředí, nebo endogenní kdy vznikají v kovu vnitřními procesy, během tavení, odlévání, tuhnutí a chladnutí odlitku.

Endogenní vměstky jsou nekovové částice, které vznikají u slitin během odlévání a tuhnutí následkem chemických reakcí prvků přítomných v slitině.

Nekovové vměstky v ocelích na odlitky se nejčastěji rozdělují do čtyř základních typů podle klasifikace, kterou vypracovali Simma a Dahle a upravil Bůžek [3].

I. typ vměstků je tvořen komplexními oxisulfidickými vměstky globulárního tvaru, náhodně rozloženými v základní kovové hmotě. Na chemickém složení těchto vměstků se podílí hlavně mangan, křemík, síra, kyslík a v nepatrné míře hliník

II. typ vměstků je tvořen především sulfidy manganu, které se vylučují až z posledních zbytků matečné taveniny. Na rovinném metalografickém výbrusu se jeví jako protáhlé částice nebo řetízky.

III. typ vměstků je tvořen převážně sulfidy manganu obsahujícími někdy oxidické jádro oxidu hlinitého, které se vyzařuje polygonálním hranatým tvarem, a jsou náhodně rozloženy v základní kovové hmotě.
IV. typ vměstků

je tvořen shluky velmi jemných vměstků na bázi oxidu hlinitého při dezoxidaci hliníkem, nebo na bázi oxidů prvků vzácných zemin, jestliže bylo k dezoxidaci použito PVZ.

Výskyt nekovových vměstků v litinách má značně menší vliv na vlastnosti odlitků než u oceli. Je to hlavně důsledek přítomnosti většího množství vyloučeného grafitu, jehož vliv je obdobný působení nekovových vměstků [4].

Způsob zjištění vady: SMI

12.3 Skupina vad 630: NESPRÁVNÁ VELIKOST ZRNA

Schéma vady

![Schéma vady](image)

Popis vady

Odchylky velikosti zrna od norem a sjednaných přejímacích podmínek. Zpravidla se jedná o hrubé zrno, popřípadě o nerovnoměrnou velikost zrna s tendencí k hrubozrnnosti.

U oceli je zapotřebí rozlišovat: Austenitické zrno (které může být buď prvotní - licí, nebo druhotné - po tepelném zpracování) a feritické, popř. feriticko-perlitické, či perlítické zrno, které se rovnez hodnotí ve stavu po odlití, avšak častěji po tepelném zpracování [7]. Velikost dalších, u oceli se vyskytuje ve strukturách složek a fází, např. martenzitu, bainitu, se hodnotí podle rozměrů desek, jehlic, paket aj., tj. s ohledem na morfologii, podle níž jsou ve struktuře vyloučeny.

Způsob zjištění vady: SMA, SMI
12.4 Skupina vad 640: NESPRÁVNÝ OBSAH STRUKTURNÍCH SLOŽEK

Schéma vady

Popis vady

Odcvylka v druhu, množství, velikosti tvaru nebo rozložení strukturních složek od ustanovení norem, nebo sjednaných technických přejímacích podmínek.

Charakteristika vady

Příčiny vzniku nutno odvodit na podkladě analýz konkrétních druhů neshod. Například u oceli může jít: při zušlechťování o nesprávný poměr mezi podílem martensitu a zbývajících nemartensitických složek (bainitu, perlitu a feritu) nebo v jiném případě ve struktuře zůstanou zachovány zbytky licí struktury - fosfidických eutektik, karbidů vyloučených po hranicích austenitických zní a podobně.

Analogické poměry mohou nastat též u litin, kde například u tvárné litiny (LKG) může jít o nepřípustně vysoký podíl jiných tvarů grafitu než je grafit zrnitý, tj. vysoký podíl lupíňkového grafitu. U šedé litiny (LLG) se může vyskytovat v celém objemu v nepřípustném množství ledeburitický cementit, popř. není dodržen předepsaný podíl feritu a perlitu v matrici.

Způsob zjištění vady: SMI [8]

12.5 Skupina vad 650: ZATVRDLINA, ZÁKALKA

Schéma vady

Popis vady

Zatvrdliny jsou tvrdá neobrobitelná místa na povrchu odlitku vzniklá přítomností tvrdých strukturních složek ve slitině - např. přítomností volného cementitu, ledeburitu nebo jiných karbidů v litinách. Je to typická vada litin (LLG a LKG).
Příčiny vzniku vady

Zkouška sklonu litin k zákalku je jedna z nejrozšířenějších informativních zkoušek kvality šedé litiny, používaných v našich i zahraničních slévárnách. V každé slévárně mají vnitřní předpis pro klínovou zkoušku v závislosti na podmínkách výroby, rozměrech a druhu vyráběných odlitků. Objasnění vlivu tvaru a velikosti zkušebního těla u této zkoušky se věnovala Březina [9] a mnoho jiných autorů.

U odlitků z tvárné litiny (LKG) vzniká zákalka zejména u tenkostěnných odlitků v důsledku nedostatečného grafitizačního očkování nebo ztrátou grafitizačního účinku očkovadla a dobou odstátí kovu po očkování.

Způsob zjištění vady: SMI

12.6 Skupina vady 560: OBRÁCENÁ ZÁKALKA

Schéma vady

Popis vady

Obrácená zákalka vytváří tvrdá místa uvnitř odlitku ze šedé litiny. Tato zákalka uprostřed stěny odlitku je výjimečným jevem.

Charakteristika vady

modifikaci obsahu kyslíku nízký, počáteční tuhnutí bude grafitizační. Tím se však tekutý kov zbaví úplně svého kyslíku. Obsah kyslíku posledních zbytků tuhnoucí litiny v tepelném středu odlitku není dostatečný a struktura se postupně stává karbidickou. Sekundární účinek má očkování. Odlitky s dobré očkovaným kovem odolávají zmenšení obsahu kyslíku a struktura tedy bude stejnoměrnější během celého procesu. Z toho plynou pro tvárnou litinu tyto příčiny vzniku obrácené zákalky: nízký obsah kyslíku v základním kovu, přemodifikování, špatné očkování.

Způsob zjištění vady: SMI

12.7 Skupina vad 670: ODUHLIČENÍ POVRCHU

Schéma vady

Popis vady

Nepřípustné oduhličení povrchu litinových a ocelových odlitků a v důsledku toho nevyhovující struktura. Nežádoucí změna struktury povrchu odlitku může být příčinou nevyhovujících mechanických, případně fyzikálních a chemických vlastností odlitku. V důsledku tuhnutí a chladnutí odlitku v oxidačním prostředí, bývá povrch odlitku oduhličen do malé hloubky, což není vlastnostem odlitku na závadu. K nebezpečnému oduhličení povrchu odlitku může dojít v průběhu tepelného zpracování v žíhacích pecích s oxidační atmosférou.

Způsob zjištění vady: SMI a SMA

12.8 Skupina vad 680: JINÉ VADY MIKROSTRUKTURY

Schéma vady

Popis vady

Odchylky mikrostruktury předepsané normami nebo sjednanými technickými přejímacími podmínkami - mimo vad uvedených ve skupinách vad 610 až 670. Mohou to být anomální tvary nebo neobvyklé způsoby vyloučených strukturních složek, jako např. grafitová hnízda, primární grafit, Chunky grafit aj. u litin. Widmannstättenova struktura, karbidy po hranách primárních austenitických zrn aj. u ocelí.

Způsob zjištění vady: SMI
Literatura

12.9 **Třída vad 700: VADY CHEMICKÉHO SLOŽENÍ A VLASTNOSTÍ ODLITKŮ**

Ve třídě 700 jsou jen 4 skupiny, které se však dále nedělí a představují 4 individuální vady. Jsou to výhradně odchylky (neshody) od norem a sjednaných technických podmínek [1].

Skupina vad 710 NESPRÁVNÉ CHEMICKÉ SLOŽENÍ

Schéma vady

![Schéma vady]

Popis vady

Odhchylky chemického složení materiálu odlitku od požadované normy nebo sjednaných technických podmínek (nejedná se o odmíšení v odlitku). Chemické složení materiálu daně normou platí pro rozbor tavby. Jestliže z jakýchkoliv důvodů nebyl odebrán tavební vzorek pro chemický rozbor materiálu a pro kontrolní chemický rozbor se vzorek odebrá ze zkušebního bloku pro zjišťování hodnot mechanických vlastností nebo přímo z odlitku

Způsob zjišťování vady: CHEM

12.10 **Skupina vad 720 ODCHYLKY HODNOT MECHANICKÝCH VLASTNOSTÍ**

Schéma vady

![Schéma vady]

Popis vady

Odhchylky hodnot mechanických vlastností materiálu od požadavků normy nebo sjednaných technických podmínek. Druhy zkoušek mechanických vlastností a podmínky zkoušení jsou pro odlitky určeny normami. Jsou to: zkoušky tvrdosti, pevnosti v tahu, tlaku, ohybu a krutu a střihu, zkoušky rázem v ohybu, tečení aj. Požadovaný rozsah zkoušek pro daný odlitek se vyznačí podle výkresu v objednávce. Hodnoty mechanických vlastností ocelí na odlitky a litiny s kuličkovým grafitem se stanoví na zkušebních tyčích, zhotovených z odlitých bloků s tloušťkou stěny 30 mm. Jestliže zákazník požaduje odlišnou tloušťku stěny zkušebního bloku, musí být závazné (přejímací) hodnoty mechanických vlastností sjednány při objednávce. Při objednávce, nebo podle sjednaných technických podmínek, mohou být požadovány mimořádné hodnoty mechanických vlastností odlitku, nebo provedeny nekonvenční materiálových zkoušek, jako jsou lomové houževnatostí aj.

Způsob zjišťování vady: SME
12.11 **Skupina vad 730 ODCHYLKY HODNOT FYZIKÁLNÍCH VLASTNOSTÍ**

Schéma vady

![Diagram odchylky hodnot fyzikalich vlastností](image1)

Popis vady

Odchylky fyzikálních vlastností materiálu odlitku od požadavku normy nebo sjednaných technických přejímacích podmínek. Jde většinou o odlitky se specifickými vlastnostmi pro chemický, elektrotechnický a strojírenský průmysl se zaměřením na přístrojovou techniku. Patří sem zvýšená odolnost proti korózi, magnetické vlastnosti, vysoká mez kluzu a stálost za zvýšené teploty, požadavky na tepelnou a elektrickou vodivost, výšená odolnost vůči mechanickému opotřebení apod.

Způsob zjištění vady: SFV

12.12 **Skupina vad 740 NEVYHOVUJÍCÍ HOMOGENITA ODLITKU**

Schéma vady

![Diagram nevyhovujici homogenita odlitku](image2)

Popis vady

Vadou nehomogenity rozumíme nikoliv rozdíl v chemickém složení, nýbrž výskyt shluků s vysokou koncentrací výcezení, sulfidů či ostatních vměstků, hrubé primární struktury, nízkou hutnost materiálu, tedy porositu, řediny, staženiny nebo ostatní vnitřní poruchy, které lze zjistit nedestruktními metodami zkoušení materiálu.

Podle metody zkoušení a rozsahu vad jsou vnitřní vady homogeneity odlitků zařazeny do klasifikačních stupňů (tříd). Zařazení této vady do klasifikace bylo provedeno s ohledem na masivní odlitky, u kterých by bylo příliš nákladné zjišťovat vlastní příčiny nehomogeneity. V takovém případě se spokojíme s konstatováním "nevyhovující homogenita odlitku".

Způsob zajišťování vady: RTG, UZD, ZPR.

Literatura

Σ **Shrnutí pojmů kapitoly**

- Je uvedeno v části „Členění kapitoly“

❓ **Otázky k probranému učivu**

- Formulace otázek k učivu odpovídá názvům dílčích kapitol v části „Členění kapitoly“
13 EXPERTNÍ SYSTÉMY PRO IDENTIFIKACI VAD ODLITKŮ

Členění kapitoly

✓ Úvod
✓ Seznámení s expertními systémy
✓ Znalostní expertní systém ESVOD
✓ Závěr
✓ Literatura

Čas ke studiu: individuální

Cíl Po prostudování této kapitoly budete umět

- Základní principy a využití znalostních expertních systémů.
- Využít expertní systém ESVOD.

Výklad

13.1 Úvod

Zvyšování kvality odlitků a jejich výroba bez vad je zásadní úkol každé slévárny pro udržení své schopnosti konkurence na trhu. Každodenní sledování procesu výroby, zjišťování počtu zmetků a správná identifikace vad je důležitou součástí managementu kvality. Spolu s vyhodnocením vedení tavby, kvality formovací směsi a dalších parametrů výroby forem a jader lze vyvodit důsledky k odstranění příčin dané vady. Je to komplikovaný proces, protože na vznik vad odlitků mají důležitý vliv i fyzikální a fyzikálně chemické jevy, které probíhají během lité, tuhnutí a chladnutí ve formě. Svůj dopravu také lidský faktor. Dokonalý technologický postup může být zcela znehodnocen nekvalitní prací formíře nebo jádraře, stejně tak jako vyrobením nekvalitní formovací směsi, tekutého kovu, způsobem lité, ošetřením nálitků, čistírenským zpracováním atp. [1].

Správná identifikace vad může být zcela znehodnocen nekvalitní prací formíře nebo jádraře, stejně tak jako vyrobením nekvalitní formovací směsi, tekutého kovu, způsobem lité, ošetřením nálitků, čistírenským zpracováním atp. [1].

Správná identifikace vad může být zcela znehodnocen nekvalitní prací formíře nebo jádraře, stejně tak jako vyrobením nekvalitní formovací směsi, tekutého kovu, způsobem lité, ošetřením nálitků, čistírenským zpracováním atp. [1].

Správná identifikace vad může být zcela znehodnocen nekvalitní prací formíře nebo jádraře, stejně tak jako vyrobením nekvalitní formovací směsi, tekutého kovu, způsobem lité, ošetřením nálitků, čistírenským zpracováním atp. [1].
S rozvojem výpočetní techniky a informačních technologií dostali technici různé nástroje, které pomáhají při řešení výpočetních problémů. Vývoj technologií (CAT), konstrukcí (CAD) a další. Technologové ve slévárnách mají možnost modelovat slévárenské pochody v odlitcích a prostědnicísimulačních programů virtuálně ověřovat navržené technologické postupy odlévání. Rozvoj výpočetní techniky umožňuje vytvoření expertních systémů (ES) také pro oblast řízení kvality a konkrétně pro identifikaci vad odlitků. ES jsou obecně počítačové programy, které řeší problémy ve specifických vědních a technických oborech formou logických informací, které jsou v nich uloženy. Existuje velký prostor pro tvorbu těchto programů, které následně mohou sloužit k rychlé a správné identifikaci vad, stanovení příčin jejího vzniku a provedení nápravných opatření, což vede k růstu kvality odlitků i zvyšování produktivity práce ve slévárně.

13.2 Seznámení s expertními systémy

Expertní systémy jsou tedy počítačové programy simulující rozhodovací šinnost skutečného experta – člověka – při řešení složitých úloh. Expertní systémy využívají specializované znalosti získané od lidského experta (expertů) s cílem dosáhnout ve zvolené oblasti kvality rozhodování na úrovni experta. Expertní systémy rozlišujeme:

- Diagnostické
- Generativní
- Hybridi

Ve své nejjednodušší formě se ES snaží přiřadit fakta, která jsou do něj zadána se symptomy nebo podmínkami, o kterých ví. Program používá tuto evidenci buď k doporučení, nebo k podniknutí nějakého opatření. Většina ES má čtyři základní komponenty: akviziční modul, datovou základnu, dedukční nástroj a obslužný interface. Akviziční modul je interace mezi zbytkem programu a lidským expertem, který instaluje speciální poznatky, jež z programu činí specifický druh experta. Akviziční modul se stará o interakce mezi lidským expertem, který vytváří požadovanou strukturu datového stromu, a datovým technikem, který vytváří datovou základnu ve formě, jež je srozumitelná pro počítačový systém. Datový strom je jednou formou vyjádření dat, kde vztahy mezi objekty a kritériem pro provedení rozhodnutí se zobrazují ve formě stromu ano - nebo.

Uživatelský interface požaduje po uživateli informace a zobrazuje rady z programu. Vysvětluje také, proč systém pokládá konkrétní dotazy nebo jak došel ke konkrétnímu závěru. Deducené nástroj obsahuje řídící mechanismus pro daný program a poskytuje strategii pro vyřešení problémů. V podstatě určuje, v jakém sledu se mají provést jednotlivé dedukce, zkontrolovat teorie nebo shromáždit důkazy.
Jádrem ES je soubor Pravidel a Dedukční nástroj. Když se ES vyvíjí zcela nově, pak je většina práce zaměřena na definování souboru Pravidel, která budou uložena spolu s programem a na výběr strategie pro Dedukční nástroj pro využívání dat/vědomostí. Data (vědomosti) mohou být v ES reprezentovány celou řadou způsobů a struktura IF-THEN/KDYŽ-TAK je jedním z nich.

Existuje několik základních požadavků na tvorbu ES:

a) Musí existovat uznávaný profesionál nebo skupina lidí, kteří mají expertní znalosti potřebné k vyřešení problému v dané oblasti.

b) Tyto osoby by měly mít tyto znalosti nebo by měly být schopny úsudku na základě značně pokročilé expertizy.

c) Daný profesionál by měl být schopen vyjádřit své znalosti nebo úsudek a zkušenosti logickým nebo metodickým způsobem. Série studií a jejich řešení odvozená logickým způsobem by pomohly řádnému návrhu ES.

d) Zvolený úkol musí být jasně specifikovaný.

e) Velmi všeobecná a povrchní datová základna jako je přiřazování jednoduchých atributů (jako v případě výběru materiálů pouze na základě fyzikálních vlastností) nemůže vyvodit žádné konkrétní výhody KBCS.

KBS poskytují systémové prostředí, kde lze spojit lidské zkušenosti se schopností počítačů k řešení specifických problémů. Mohou být aplikovány při řešení širokého okruhu problémů ve slévárenské výrobě a jedním z dobrých příkladů je identifikace vad odlitků. Bylo prokázáno, že takové systémy se mohou rychle vyvíjet s využitím komerčních nástrojů, které nevyžadují zkušené softwarové programátory.

Později se objevily nové informace o využití ES pro řešení vad odlitků. Např. výzkum využití ES v oblasti diagnostiky penetrace kovu a povrchových vad od nátěrů [7]. Záměrem těchto výzkumů bylo prozkoumat používání objektově orientovaných ES v technologii diagnostikování a analýzy zmíněných vad a k doporučení nápravných opatření. Systém doporučení zahrnuje kvantitativní předpisy pro změny v technologii a postupů, které vedou k odstranění vady. Systém byl implementován na mikropočítačový program, který s rozšířenými grafickými schopnostmi podporuje identifikaci vad. Systém má široké využití ve slévárenském průmyslu a je považován za počáteční krok směrem k vývoji komplexnějších systémů.

Další práce se zabývala možností aplikovat diagnostiku a analýzu vad odlitků na webových stránkách internetu. Moynihan a kol. [8] vycházeli ze skutečnosti, že mnoho malých sléváren může postrádat vnitropodnikovou expertizou k dostatečnému řešení
EXPERTNÍ SYSTÉMY PRO IDENTIFIKACE VAD ODLITKŮ

problematiky vad odlitků. Implementace ES na internetu připouští širokou distribuci expertizy do různých sléváren. Účelem těchto výzkumů je vyvinout prototyp webového ES pro diagnostiku a analýzu vad. Tato práce naznačila další možnost využití internetu. Pro kontrolu slévárenských vad byl vytvořen vzorový prototyp KBS, který využívá expertní systém založený na výrobních pravidlech, byl vytvořen pro kontrolu slévárenských vad. Systém se nyní skládá ze tří oddělených modulů:

- Modul pro diagnózu slévárenských vad.
- Modul pro identifikaci příčin a prevenci vzniku vad.
- Modul pro zobrazení vad.

Současný stav vývoje systému je omezen na odlitky ze slitin železa odlévané do pískových forem. Nicméně o dalším rozmachu těchto KBS se uvažuje. Když mohou plně rozvinuté a naimplementované takovéto KBS poskytnout řadu výhod v kontrole vad odlitků napříč celým spektrum slévárenské výroby, stejně tak mohou být efektivním výcvikovým nástrojem pro identifikaci vad odlitků.

Možnost využití ES k rychlé a správné identifikaci vady, stanovení příčiny vzniku vady a provedení nápravných opatření inspirovala také pracovníky závodu sléváren TATRA a.s. k vytvoření vlastního ES vyhodnocování vad odlitků počítačem, který má hodnotit vadu podle jejích vnějších příznaků. Jádrem každého ES je databáze znalostí, která zachycuje znalosti expertů, inferenční (odvozovací) mechanismus a vstupní informace uživatele (databáze dat). Inferenční mechanismus hledá řešení problému na základě vstupních informaci uživatele a to s využitím databáze znalostí. Urychlení celé realizace podpořily zprávy z literatury, že takové systémy existují a dále skutečnost, že pro vytvoření báze znalostí mohli autorů použít znalosti kolektivu expertů z různých pracovišť [1]. Program pro rozhodování byl vypracován v TURBO Pascalu 5.0 pro osobní počítač kompatibilní s IBM PC AT (pro češtinu byl použit kód Kamenických). Tento ES nebyl upraven pro spuštění aplikace v Microsoft na moderních počítačích a z tohoto důvodu se přestal používat.

13.3 Znalostní expertní systém ESVOD

Po otestování v řadě českých sléváren tak vznikl znalostní expertní systém, který byl nazván ESVOD [10]. Systém obsahuje tři úrovně:

- identifikace vady podle vnějších příznaků
- diagnóza a příčiny vady
- prevence a léčba.

Tab. 1 – Seznam skupin příznaků slévárenských vad

<table>
<thead>
<tr>
<th>Číslo skupiny</th>
<th>Příznak vady</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poloha materiálu vůči povrchu odlitku</td>
</tr>
<tr>
<td>2</td>
<td>Drsnost povrchu vady</td>
</tr>
<tr>
<td>3</td>
<td>Umístění vady vůči povrchu odlitku</td>
</tr>
<tr>
<td>4</td>
<td>Tvar vady</td>
</tr>
<tr>
<td>5</td>
<td>Rozložení, průběh vady</td>
</tr>
<tr>
<td>6</td>
<td>Umístění vady vůči formě</td>
</tr>
<tr>
<td>7</td>
<td>Barevný vzhled a jiné zvláštní aspekty</td>
</tr>
<tr>
<td>8</td>
<td>Doprovodná vada</td>
</tr>
<tr>
<td>9</td>
<td>Technologické okolnosti související s vadou</td>
</tr>
<tr>
<td>10</td>
<td>Vada obsahuje</td>
</tr>
<tr>
<td>11</td>
<td>Materiál odlitku</td>
</tr>
<tr>
<td>12</td>
<td>Materiál formy</td>
</tr>
<tr>
<td>13</td>
<td>Vzhled lomové plochy</td>
</tr>
</tbody>
</table>

V každé z uvedených 13 skupin je různý počet příznaků (průměrně 9, maximálně 22). Na první obrazovce aplikace si uživatel vybere ze dvou voleb:

1) Identifikace vady podle vnějších příznaků.

2) Seznam vad s jejich číselným označením.

Pokud uživatel zvolí volbu ad 1, bude podle vnějšího vzhledu vady na odlitku volit v jednotlivých obrazovkách aplikace příznaky vady tak dlouho, až se na poslední obrazovce objeví číslo vady s jejím popisem, příčinou jejího vzniku, způsobem zjištění vady a opatřením k odstranění dané vady, eventuálně odkazem na literaturu. Číslování vad a textový popis čerpá z knihy „Vady odlitků ze slitin železa“ [1] a na základě posledních výzkumů byl aktualizován. Popis příznaku vady by byl vypracován pro 72 druhy vad dle klasifikace vad odlitků [1], včetně jejich číselného vyjádření (viz též tab. II v kapitole 1.2.2).

Při volbě ad 2 se na další obrazovce zobrazí seznam všech vad, uživateli se kliknutím na číslo vady zobrazí popis zvolené vady, příčiny jejího vzniku, způsob zjištění vady a opatření k odstranění dané vady, eventuálně odkazy na literaturu. Do databáze vad odlitků by se daly uložit i digitální snímky jednotlivých vad, které by si uživatel mohl nechat zobrazit a porovnávat je s konkrétní novou situací. Tento postup je vhodný pro ty uživatele, kteří určí vadu odlitku sami a chtějí získat údaje o této vadě a místo listování v knize komunikují s počítačem. Na Obr. 2 až 6 jsou zobrazeny jednotlivé obrazovky při identifikaci vady.
Uživatel si kliknutím vybere činnost, kterou chce provádět a klikne na tlačítko „>“ (Další obrazovka).

Obr. 2 Vstupní obrazovka ES

Kliknutím na tlačítko „ Začátek “ se uživatel vrátí zpět na první obrazovku ES.

Kliknutím na tlačítko „<“ se uživatel vrátí o obrazovku zpět.

Obr. 3 Druhá obrazovka při identifikaci vady zobrazuje příznaky skupiny 1 „Poloha materiálu vůči povrchu odlitku“
Obr. 4 Na třetí obrazovce ES nabízí příznaky „Umístění vady vůči povrchu“

Obr. 5 Na čtvrté obrazovce se zobrazí u této identifikace vady příznaky o povrchu vady
Obr. 6 Na páté obrazovce se v uvedeném příkladě objeví číslo identifikované vady a její popis

ES by se dále mohl rozšířit o databázi dat, do které by si uživatel sám vkládal údaje ke každému odlitku (nebo sérii odlitků), např. o vedení tavby, chemickém složení taveniny, její teplotě odlévání, vlhkosti formovací směsi, době tuhnutí, způsobu čištění odlitku. Zpracování těchto údajů pomůže správně identifikovat příčiny vady, následně umožní zabránit vzniku vad odlitků a tím zvýšit jejich kvalitu.

Systematickou práci o využití umělých neuronových sítí v metalurgii a materiálovém inženýrství publikovala Jančíková [12]. V současné době se začínají neuronové sítě uplatňovat v různých oblastech diagnostiky a stávají se součástí systému řízení jakosti ocelářských výrobků (CAQ). Vstupy do neuronové sítě jsou parametry diagnostikovaného objektu a výstupy např. logické hodnoty určující přítomnost určitého příznaku, který se vyskytuje u zkoumaného objektu. Neuronové sítě se stále více využívají v oblasti znalostního inženýrství v aplikaci na problém diagnostiky a predikce vad různých typů ocelářských výrobků, k rozpoznávání a klasifikaci jako např. rozpoznávání a klasifikace microstruktury a velikosti zrna apod.
13.4 Závěr

Použití metod sloužících k určování metalurgických, slévárenských a jiných příčin vad odlitků je neoddelitelnou součástí systému zlepšování kvality výroby a odlitků. Expertní systémy se stávají mocným nástrojem pro slévače při identifikaci a analýze příčin vzniku vady na odlitku a také jsou jednou z možností, jak zajistit vyšší kvalitu odlitků a snížit výrobní náklady. Expertní systém ESVOD vytvořený na Fakultě metalurgie a materiálového inženýrství Vysoké školy báňské – Technické univerzitě Ostrava nabídl slévárnám nástroj pro identifikaci a analýzu příčin vzniku vad na odlitcích a také jsou jednou z možností, jak zajistit vyšší jakost odlitků a snížit náklady na neshodné výrobky - zmetky. Pro studenty a zájemce ze sléváren je demo verze k dispozici na internetových stránkách školy na adrese http://katedry.fmmi.vsb.cz/618/

13.5 Literatura

[6] AHMET, Er., KONDIC, V.: Knowledge-based systems and their application in casting defects control / Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL, UK
14 KVALITA ODLITKŮ A NÁKLADY. VÝROBA ODLITKŮ BEZ VAD

Členění kapitoly

✔ Kvalita odlitků a náklady
✔ Výroba odlitků bez vad
✔ Aplikace ve slévárenství
✔ Shrnutí
✔ Literatura

Čas ke studiu: individuální

Cíl

Po prostudování této kapitoly budete umět

- Analyzovat vztahy mezi kvalitou a náklady na prevenci a výdaji na neshodné výrobky.
- Přístupy k zlepšování kvality odlitků k cíli Výroba bez vad.
- Použít metodu Quality Journal ke zlepšování kvality odlitků.

Výklad

14.1 Kvalita odlitků a náklady

Náklady vztahující se ke kvalitě u výrobce se charakterizují jako výdaje na celkové zajištění managementu kvality. Výdaje můžeme členit do dvou skupin jako výdaje na neshodné výrobky, což jsou vlastně ztráty organizace a na výdaje na předcházení vadám (prevence).

Výdaje na neshodné výrobky můžeme členit:

- Výdaje na interní neshodné výrobky (zmetky).
- Výdaje na třídění, vytřídování.
- Výdaje na opravy vad odlitků.
- Výdaje porad „zmetkových“ komisi.
- Reklamace, opravy a vícepráce u zákazníka.
Mezi preventivní aktivity ve slévárnách patří například zavádění nových zkušebních a kontrolních postupů, zvýšení frekvence mezioperační kontroly, zavádění počítačové podpory technologické přípravy výroby, zavádění nových technologií, ale i výdaje na udržování systému managementu kvality. Tyto příkaly bychom mohli v jednotlivých slévárnách dále konkretizovat. Může to být případ náhrady FeSi pro očkování litin nákladnějším očkovadlem s prodlouženou dobou účinnosti, nebo zvýšení počtu zkoušek formovací směsi během směny, zavedení filtrace kovu ve vtokové soustavě, zakoupení simulacních programů, zavedení termické analýzy u hliníkových slitin, školení zaměstnanců atd. Tyto výdaje mají za následek (jsou-li správně investovány) snížení ztrát z důvodu neshodných výrobků, tak jak byly výše vyjmenovány. Na obr. 1 je graf obecné závislosti nákladů a ceny odlitků na úrovni kvality a výdajích na prevenci ve slévárně, jehož vytvoření bylo inspirováno prací Woottona a Knighta [1]. Z obrázku můžeme vysledovat jak s rostoucími výdaji na prevenci (křivka P) klesají ztráty (Z) způsobené neshodnými výrobky. Obojí spolu s vlastními náklady výroby (materiál, technologická energie a přímé osobní náklady dávají celkové náklady na výrobu odlitku (křivka C). Celkové náklady s rostoucí úrovní kvality dosahují minimálních hodnot, které představuje pro příslušnou slévárnu účelné rozvržení prostředků na snížení zmetkovité směsí i prevenci vad. Požaduje-li trh kvalitu odlitků vymezenu pořadnicí a (obr. 1) a nachází-li se slévárna s kvalitou a celkovými náklady v blízkém okolí minimálních úrovní, může se na trhu dobře uplatnit. V tomto případě platí definice kvalitního odlitku, známá již z první kapitoly:

KVALITNÍ ODLITEK = TAK DOBRÝ, JAK JE TŘEBA A TAK LEVNÝ, JAK JE TO MOŽNÉ

Symbols v grafu značí:

- **Z** - náklady na neshodné výrobky, reklamace, opravy
- **P** - náklady na zajištění jakosti (prevence)
- **V** - vlastní náklady výroby
- **C** - celkové náklady
- **F** - fakturační cena

- **a** - nízká úroveň kvality
- **0** - optimální náklady
- **b** - vysoká úroveň kvality

Obr. 1 Závislost nákladů na úrovni kvality a prevence při výrobě odlitků.
Pokud zákazník požaduje kvalitu nacházející se v oblasti b, která přesahuje optimum, musí zvýšit své výdaje na prevenci a kvalitu a dostává se do situace, že se mu zvýší celkové náklady, přirozeně na úkor zisků.

S takovou situací se můžeme ve slévárnách setkat, když zákazník si objedná zboží dané pořadnicí a v grafu na obr. 1 a později si začne vynucovat kvalitu odpovídající pořadnici b. Čára V představující vlastní náklady výroby (materiál + technologická energie + přímé osobní náklady) je rovnoběžná s osou x, protože se vztahuje na určitý daný počet kusů a s kvalitou nesouvisí. Na druhé straně, čára F, která je fakturační cenou odlítku s rostoucí úrovní kvality mírně stoupá a tím naznačuje skutečnost, že zákazník je ochoten za vysokou kvalitu zaplatit vyšší cenu. Vyjadřuje to větší spokojenost zákazníka nejen ze zaručené a stabilní kvality odlítků, ale i za plnění termínů dodávek a včasnou reakci na změny apod.

14.2 Výroba odlítků bez vad

O práci bez vad (ZERO DEFFECT) se často hovoří na nejrůznějších úrovních firemního řízení. Snížení množství neshodných výrobků je totiž přímou cestou k snižování nákladů, zvýšení spokojenosti zákazníků a ke stabilitě firmy na trhu. Tak jak bylo výše naznačeno, některé firmy a některé obory dosahují minimální počet neshod. Jako příklad se často uvádí společnost MOTOROLA, která před více než dvaceti lety vyvinula koncept Šest sigma (Six Sigma), který vedl tento podnik ke koncentraci na zákazníka, pomáhal změnit podnikovou kulturu a směřoval jej k dokonalé kvalitě a práci bez vad. Důsledné využívání programu Six Sigma pak přineslo slávu firmě General Electric

Termín "sigma" představuje v tomto programu směrodatnou odchylku a označuje rozložení nebo rozptyl sledovaného procesu. Snižování počtu vad je však jen jedním z aspektů programu Six Sigma. V širším smyslu má za cíl snižování výrobních nákladů, zkracování inovačních a výrobních cyklů, zvyšování spokojenosti zákazníků a prosperity firmy. Dosažení jakosti Six Sigma znamená pravděpodobný výskyt 3,4 vadných kusů z miliónu (3,4 ppm). Tuto úroveň jakosti můžeme považovat za práci bez vad. Přitom ale musíme rozlišovat dodávky bez vad a výrobu bez vad. Dodávky bez vad se mohou dosáhnout tak, že výstupní kontrola přijme taková opatření, že dokáže identifikovat neshodné výrobky a ty vyřadit. Tento přístup se často aplikuje u dodávek odlítků pro letecký a automobilový průmysl, kdy se aplikují různé nedestruktivní kontroly vad. Výroba bez vad je náročnější a vyžaduje hlubokou znalost všech parametrů výrobního procesu a jejich působení na jakost odlítku. Dosažení výroby bez vad je obtížnější než dodávek bez vad.

Také ve slévárenství se řada odborníků zabývá myšlenkou dosažení vyšší kvality tj. maximálně v desítkách případně stovkách ppm. Zatímco při odlévání odlítků ze slitin hliníku do kovových forem tlakem nebo i gravitačně se tento cíl zdá být dosažitelný, pak při odlévání do pískových forem se jeví jako utopický.

Jeho záměrem je průběžně se zlepšovat. Při tom se aplikuje základní princip zlepšování DMAIC (česky = DMAZR):

\[
\begin{align*}
\text{DEFINE} & \rightarrow \text{DEFINUJTE} \\
\text{MEASURE} & \rightarrow \text{MĚŘTE} \\
\text{ANALYSE} & \rightarrow \text{ANALYZUJTE} \\
\text{IMPROVE} & \rightarrow \text{ZLEPŠUJTE} \\
\text{CONTROL} & \rightarrow \text{ŘIĎTE}
\end{align*}
\]

Přitom musí platit, že proces není ukončen, pokud není pod kontrolou. Důležitou součástí programu SIX SIGMA je týmová práce. Pro slévárenskou praxi je zajímavá myšlenka „robustních procesů“ a „robustní konstrukce“ tak, jak ji v souvislosti s využitím programu Six Sigma uvedl W. Schott [2].

14.3 Aplikace ve slévárenství

Jednu z prvních studií o výrobě odlitků bez vad zveřejnil Bauer [3], který se mimo jiné zabýval i rozborem právnických aspektů termínů vada – kaz – neshoda. Ve slévárenství bychom měli spíše hovořit o výrobě odlitků bez neshodných kusů, protože to neznamená, že v nich nemůže být některá vada, která není na závadu funkci dané součásti a tedy „nevadí“. Přesto se v dalším textu bude držet termín výroba „bez vad“.

Konkrétním příkladem řešení výroby odlitků bez vad mohou být zkušenosti sléváreny RAUTENBACH Guss (bytí NEMAC) Wernigerode a DAERIM ENTERPRISE Co Ltd (v Koreji) [4]. Jedná se o německo-korejskou spolupráci při výrobě hliníkových hlav válců do kovových forem s pískovými jádry. Řešení směrem k výrobě bez vad spočívalo na následujících zásadách. Měřili a zaznamenávali všechny údaje, které se podílejí na slévárenské výrobě tak, aby byly v kteroukoliv chvíli k dispozici a mohly se analyzovat a to pro každou fázi výroby – viz obr 2.

Před tím nebylo možné najít vztahy mezi údaji, týkajícími se postupu odlévání a kvality vyrobených odlitků, protože odlitky nebyly jednotlivě značeny. Jako jediné byly zaznamenány druh odlitku, jeho původ, hodinová produkce a jméno operátora. Aby se v každém okamžiku mohla definovat kvalita odlitku, musí se individuálně značit. Pak musí být vybrány vhodné statistické metody k vyhodnocování tak, aby se stanovila korelace mezi kterýmkoliv odlitkem a parametry, které se u něj sledují. Je důležité využít objektivních přístupů k určení kvality a zabránit subjektivnímu hodnocení, které vede k chybným závěrům, týkajících se použitého postupu. Správná identifikace vad odlitků byla i v tomto případě prvním předpokladem ke zvyšování kvality a výrobě bez vad.
Snaha o práci bez vad ZERO DEFEKT.
Je to ve slévárenství reálné, nebo je to iluze?

Obr. 1: Schématické znázornění prostředků k určení parametrů výroby ZERO DEFECT

Snaha o práci bez vad ZERO DEFEKT.
Je to ve slévárenství reálné, nebo je to iluze?

Kvalita odlitků a náklady. Výroba odlitků bez vad.

Tento přístup se podařilo aplikovat ve slévárně TATRA [5] při výrobě odlitků do pískových forem. Byl vyvinut a aplikován informační systém, který vyhodnocoval soubory informací o odlitcích s vadami a bez vad, sledoval kvalitu důležitých technologických parametrů v časových řadách, jejich trendy apod. Tento systém, který pracoval s fakty a objektivními informacemi se však nepodařilo zcela "zautomatizovat" (mnohá data musela být vkládána ex-post ručně), což znamenalo administrativní náklady navíc a systém se přestal využívat. Byl založen na dobrém značení odlitků a jejich identifikovatelnosti až do konečné kontroly. Pokud nebylo možné určit příčiny vady pomocí diagramu příčin a následků pak byly využity různé statistické metody podle různé úrovně statistického řízení procesu SQC (Statistical Quality Control [6]). V první úrovni SQC kontrolujeme normalitu a stabilitu procesu pro jednotlivé parametry. Jedná se o výsledky hodnocení regulačních diagramů, vyhodnocení aritmetických průměrů aj. Druhá úroveň SQC využívá trendovou analýzu zpracování údajů o procesu výroby za několik následujících dnů, týdnů a měsíců a porovnáváme tyto trendy s výslytem vad. Třetí analytická úroveň SQC využívá pro rozhodnutí o příčině vady rozbor statistické významnosti rozdílu mezi různými soubory např. vadných a dobrých odlitků. Tato úroveň není zázařačným prostředkem, ale většinou bývá konečnou možností k určení příčiny vady. Ale i zde se musí uplatnit zkušenost a intuice.
KVALITA ODLITKŮ A NÁKLADY. VÝROBA ODLITKŮ BEZ VAD.

Technika, který provádí hodnocení. Pomocí zavedeného SPC přístupu se podařilo vyřešit několik případů krize kvality u odlitků s vysokou zmetkovitostí. Součástí tohoto stavu bylo i využití metody „QUALITY JOURNAL“ při snižování množství neshodných výrobků a zlepšování kvality směrem k výrobě odlitků bez vad. Tento postup byl uveden v kapitole 4 jako jeden z nástrojů kvality a můžeme jej zobecnit i pro další slévárně takto:

QUALITY JOURNAL – ZLEPŠOVÁNÍ K VÝROBĚ ODLITKŮ BEZ VAD

1. Identifikace problému – třeba identifikovat neshodný výrobek a vadu. Tento krok má zásadní význam pro další postup.

2. Sledování problému – zkoumají se vlastnosti: čas a místo výskytu vady, její příznaky a četnost výskytu.

3. Analýza příčin problému. Zde se využívá diagram příčin a následků a identifikují se všechny možné příčiny vady. K tomu lze využít vhodné příručky a atlasy vad odlitků nebo týmovou práci metodou „brainstorming“. Pak se analyzuje míra vlivu jednotlivých příčin. Přitom by mělo dojít k širokému uplatnění statistických metod: analýza způsobilosti procesu, analýza rozptylu, testování hypotéz rozdílu mezi soubory s dobrými a vadnými odlitky, regresní a korelační analýza a případně další. Opět by se měla konsultovat i literatura a to jak vlastní firemní zprávy, tak i odborné publikace.

4. Návrh a realizace opatření k odstranění příčin. V této fázi lze s výhodou využít metodu FMEA, simulační prográmy proudění a tuhnutí kovu a plánování experimentu.

6. Trvalá eliminace příčin V tomto kroku se musí změnit a doplnit veškerá technologická i kontrolní dokumentace a provést školení zaměstnanců.

7. Zpráva o řešení problému. Tato fáze se často opomíjí a zpráva o průběhu řešení doložená konkrétními daty a rozbory se nezpracovává. Nevyhodnocují se dosažené výsledky a nedokumentuje se postup vedoucí k odstranění problému.

Výše uvedený postup je vhodný pro řešení problémů s vadami odlitků. Jak jsem již uvedl, řada sléváren ho využívá, i když některé kroky přeskakuje či vynechává. V každém případě je to řešení následků. Výhodnější je systematická práce zaměřená na prevenci. Slévárenský obor pracuje s mnoha vstupními proměnnými, jejichž jakost je obtížně definovatelná. Použití statistických metod (SPC) je pak jedinou možností, jak pracovat stabilně, mít procesy pod kontrolou a dosahovat minimálního množství neshodných výrobků.

14.4 Shrnutí

Výroba odlitků bez vad ve slévárnách s odléváním kovů do kovových i pískových forem je dlouhodobá záležitost systematické práce, která začíná už ve fázi návrhu výrobní technologie. Souvisí s procesem neustálého zlepšování kvality a musí vycházet z těchto zásad:

a) Začíná se návrhem a vývojem procesu s využitím metod FMEA, simulačních programů proudění a tuhnutí kovů a metod plánování experimentů. Můžeme využít princip robustní kvality.

178
b) Validace produktu a procesu – zahrnutí požadavků a potřeb zákazníků do relevantních veličin jakosti procesu a produktu. Zaměřujeme se na prevenci neshod.

c) Musíme dobře poznat proměnlivost výrobního i měřicího systému. Zaměřujeme se na opakovatelnost a reprodukovanost. K tomu existuje celá řada nástrojů SPC.

e) Slévárny, které mají zavedeny systémy řízení jakosti podle ČSN EN ISO 9001:2009, mají tyto principy ve velké míře již implementovány a jejich doplnění a propracování by nemělo být pro ně problémem.

Závěrem lze říct, že respektování těchto zásad může vést slévářně až k výrobě bez vad. Bude to však vyžadovat cíleleménný přístup vedení slévárny, který je zpočátku finančně i personálně náročný a úspěch tohoto procesu bude záviset i na dobré spolupráci výrobce–dodavatel–zákazník ke spokojenosti všech tří subjektů.

14.5 Literatura