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INSTRUCTIONS FOR STUDENTS 

Phase Transformations 

The study materials package containing an integrated university textbook for combined study 

programmes, including the instructions for students, is intended for a specific subject within 

1st term of the Advanced Engineering Materials field of study. 

1. Prerequisites 

Completion of subjects as Material Sciences, Structure and Properties of Solids and Heat 

Treatment Essentials is the vital prerequisite for enrolling in this subject. 

2. Objectives and Learning Outputs 

The objective of this subject is to introduce students to the basic thermodynamic, 

crystallographic and kinetic laws of phase transformations in engineering materials. 

Transformations considered vital from the engineering point of view have been demonstrated 

by means of practical examples. 

Thorough study of the text should enable the student to: 

- differentiate between basic types of transformations in engineering materials based on their 

thermodynamic, crystallographic and kinetic characteristics, 

- define a plausible mechanism of phase transformations occurring under given conditions 

during technological processing of metallic materials, 

- identify the basic transformation products in engineering materials. 

As the scope of agenda, dealing with phase transformations is very large; this textbook does 

not discuss all the issues defined within the syllabus profile of the subject. Any additional 

information can be obtained from books listed in the bibliography at the end of this textbook 

as needed. 

Subject designation: 

 This subject has been included within the master's programme in the field of Progressive 

Engineering Materials, the study programme of Material Engineering but it is also suitable for 

any students from various fields of study provided they comply with the set prerequisites. 

Procedure recommended approaching each chapter: 

Read through the text section carefully and solve the exercises provided (for correct solving 

procedures refer to details shown below each exercise). Try to answer questions listed at the 

end of each chapter. For more details on the particular agenda please refer to the link 1, 



publications 2 - 4 contain various specific examples - see the bibliography at the end of 

textbook. 

Communication with tutors: 

Any problems can be addressed by means of personal consulting per individual arrangements 

with the tutor. This subject involves completion of a term project and passing the academic 

test to obtain the credit required. Project topics and detailed instructions for completion of 

projects will be notified to students at the beginning of direct full-time tuition. The period for 

assessment of term projects by the tutor is 14 days following their submission.  

Phone: +596 994 432 (prof. Ing. Vlastimil Vodárek, CSc. subject guarantor) 

E-mail: vlastimil.vodarek@vsb.cz 
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1. Introduction 

Phase transformations are associated with changes of state or crystal structure in solids 

towards the equilibrium state under specific ambient conditions. The resultant microstructure 

enables division of phase transformations in solids into two categories: 

a) The original phase disappears in full and it is replaced with another one, 

b) The original phase develops a small fraction of one or more new phases (minor phases). 

As far as the technology is concerned, phase transformations represent a very significant tool 

to enable a controlled process for changing of structural characteristics of materials as well as 

their end-use properties.  

When studying phase transformations, we look deeper into the conditions, at which one phase 

transforms into another or even a mix of several phases. Phase transformations are driven by 

the fact that the initial structural condition of material is unstable when compared to the new 

condition. How do we measure the stability of phases? This question is addressed by 

thermodynamics. For transformations occurring at constant temperature and pressure, the 

Gibbs free energy defines the relative system stability: 

                                                              G = H – TS                                                      (1.1) 

Where H is enthalpy, T is the absolute temperature and S is the system entropy. Enthalpy is a 

measure of the heat content of the system defined by the following formula: 

                                                     H =E+pV                                                  (1.2) 

Where E is the internal energy of the system (the sum of potential and kinetic energy of atoms 

in the system), p is the pressure and V refers to the system volume.  

The system is in equilibrium when in the most-stable condition, i.e. there is no driving force 

towards changes. With constant temperature and pressure, the closed system (its weight and 

composition remain constant) will remain in stable equilibrium provided it reaches the 

minimum value of Gibbs free energy: 

                                                      dG = 0                                                          (1.3) 

For graphic depiction of the equilibrium state see Fig. 1.1. Various atomic configurations of 

the system are shown along the x-axis. The A configuration represents the stable equilibrium 

state. Nevertheless, the system could feature a few more configurations, e.g. B, located within 

the area of local minimum of the Gibbs free energy. Such configuration is defined as the 
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metastable equilibrium state. With respect to principles of thermodynamics, any reaction is 

possible when associated with a reduction of Gibbs free energy: 

                                                        G = G2 – G1                                            (1.4) 

where G1 refers to Gibbs energy in the initial state and G2 is Gibbs energy found in the 

resultant state. Transformations can occur throughout a whole range of metastable conditions 

until the system reaches its stable equilibrium.  

 

Fig. 1.1 Change of Gibbs free energy provoked by different arrangements of atoms. The A 

configuration represents a stable equilibrium the lowest G), whereas the B configuration 

matches the metastable condition 

As far as technology is concerned, the vital factor here is the rate of phase transformations. 

This issue is addressed by kinetics. Some life cycles of metastable conditions may be very 

short; other cases might show these periods as almost infinite. These differences are due to the 

maximum of Gibbs energy located between the metastable and stable conditions, respectively. 

The maximum represents an energy barrier reducing the rate of transformation. Fig. 1.2 shows 

the change of free energy per atom throughout the phase transformation, starting at the initial 

metastable condition towards the condition with reduced free energy. The driving force of 

transformation is then defined as follows: G = G2 – G1. Before the amount of free energy per 

atom drops from the level of G1 to G2, the relevant atom must undergo its activated condition 

matched by the amount of Gibbs energy expressed as G1 + G
a
. The energy shown in Fig. 1.2 

represents energy averages related to a great number of atoms. A random thermal shift of 

atoms will induce change of energy per atom over time and it may be sometimes sufficient to 

enable the atom to achieve its activated state. This process is called the thermal activation. 

Arrangement of atoms                              

G
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Fig. 1.2 Transfer from the initial state to the final state via the activated state having a 

greater energy   

The theory of kinetics implies the apparent stage, when the atom reaches its activated stage, it 

is defined by the formula exp (− ∆𝐺𝑎

𝑘𝑇⁄ ), where k refers to the Boltzmann's constant (k = 

1.3810
-23

 JK
-1

) and G
a 

is the activation energy barrier. The rate of transformation will 

depend on frequency of atoms when reaching the activated state: 

                                          𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∝ 𝑒𝑥𝑝 (−
∆𝐺𝑎

𝑘𝑇
)                                        (1.5) 

This formula is called the Arrhenius rate equation. It was initially determined on empirical 

basis using the observed temperature dependence of chemical reaction rate.  
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2. Thermodynamics of Phase Transformations 

 

 
Objective:  Completion of this chapter will enable you: 

 - Define the equilibrium in heterogeneous systems 

- Use chemical potential and activity of components in alloys, 

- Describe the differences between the ideal and regular solid solutions, 

- Describe the relevance between the binary diagram and curves showing Gibbs 

free energy of phases, 

- Characterise the impact of curved interface on the phase equilibrium.  

 

 
EXPLANATION 

Single-component systems contain all phases with the same composition and their equilibrium 

is dependent on two variables - temperature and pressure - only. The composition of multi-

component systems also plays the role of a variable and, when studying the phase 

transformations, it is necessary to know, how the Gibbs free energy depends on temperature, 

pressure and the system compositions.   

2.1 Gibbs Phase Rule 

Gibbs free energy in binary solution can be calculated using the values of free energy of pure 

components A and B. The initial assumption is that pure components have identical 

crystalline structure and they can be mixed at any ratio, i.e. these can form a continuous solid 

solution with the same crystalline structure. Let us assume that 1 mole of homogeneous solid 

solution has been produced by mixing XA moles of component A with XB moles of 

component B: 

                                                    XA + XB = 1                                                (2.1) 

where XA and XB represent molar fractions of A and B components in alloy. To calculate the 

Gibbs free energy, the process of components mixing can be divided into two steps: 

1. Create a system with XA moles of pure component A and XB moles of pure component B, 

 

 
Study time: 5 hours 
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2. Mix atoms A and B to develop a homogeneous solid solution. 

 

                       Fig. 2.1 Gibbs free energy of a homogeneous solid solution 

Following step 1, the free energy within system will be: 

                                        𝐺1 =  𝑋𝐴𝐺𝐴 + 𝑋𝐵𝐺𝐵       (Jmol
-1

)                                          (2.2) 

where GA and GB refer to molar Gibbs free energy of pure components A and B under the 

experimental temperature and pressure.  

The value of G1 may be depicted by means of a diagram, where the molar Gibbs free energy is 

shown as a function of molar fractions XA
 
and XB. For any compositions of binary alloys, the 

values of G1 lie on the line between GA and GB.  

 

Fig. 2.2 Change of G1 (Gibbs energy before mixing) with alloy composition (XA, XB) 

Mixing of atoms A and B will result in change to the Gibbs free energy in the system; the free 

energy of solid solution present after step 2 can be expressed using the formula: 

G1 

Before mixing After mixing 

Total free energy Total free energy 

solution by mixing 

solid 
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                                                    𝐺2 =  𝐺1 + ∆𝐺𝑚𝑖𝑥                                                         (2.3) 

where Gmix refers to the change of Gibbs free energy induced by mixing of atoms. 

Since G1 = H1 – TS1 a G2 = H2 – TS2, the formula can be broken to Hmix = H2 – H1 and Smix 

= S2 – S1 and subsequently: 

                                            ∆𝐺𝑚𝑖𝑥 =  ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥                                               (2.4) 

where Hmix refers to the heat absorbed or released during the step 2. Disregarding the change 

in volume during the process, Hmix represents the difference of internal energy (E) before 

and after mixing of atoms. Smix is the difference in entropy in the mixed condition and the 

condition before mixing. 

2.2 Ideal Solutions 

The simplest case of atom mixing is represented by the condition, where Hmix = 0. The 

resultant solution in this case is defined as ideal and the change of Gibbs energy relevant to 

the mixing of atoms is expressed as: 

                                                      ∆𝐺𝑚𝑖𝑥 =  −𝑇∆𝑆𝑚𝑖𝑥                                                    (2.5) 

Statistical thermodynamics deals with entropy in quantitative relevance to the randomness by 

means of the Boltzmann's equation: 

                                                                𝑆 = 𝑘 ln 𝜔                                                           (2.6) 

where k is the Boltzmann's constant and  is a measure of randomness. There are two 

contributions to the entropy of solid solution: thermal contribution Sth and the configuration 

contribution Sconfig. 

As far as the thermal entropy is concerned,  represents the number of ways how to distribute 

the thermal energy within a solid substance among atoms, i.e. the total number of ways how 

to arrange vibrations within a solid substance. In solutions additional randomness exists due 

to different ways in which atoms can be arranged. That leads to another entropy contribution 

Sconfig, for which the  represents a number of identifiable ways for configuration of atoms 

within a solid solution.  

Unless there is a change of volume or temperature during mixing of the atoms, then the only 

contribution associated with Smix is the change of configuration entropy. Before mixing, 



Phase Transformations 
__________________________________________________________________________________ 

7 
 

atoms of both A and B were kept separately inside the system and there was only one 

identifiable way of their arrangement. For this reason S1 = k ln 1 = 0, therefore Smix = S2.  

Assuming that mixing of A and B atoms will develop a substitutional solid solution and that 

all arrangements of atoms occur with the same probability, the number of distinguishable 

ways of arranging the atoms on the atom sites will be: 

                                                      𝜔𝑐𝑜𝑛𝑓𝑖𝑔 =
(𝑁𝐴+𝑁𝐵)!

𝑁𝐴!𝑁𝐵!
                                                    (2.7) 

where NA is the number of atoms of component A and NB is the number of atoms of 

component B. 

Since we are dealing with a system comprising 1 mole of solution, i.e. Na atoms (Avogadro's 

number): 

                                         NA = XANa   and   NB = XBNa                                                (2.8) 

Solving the equations above and using the Stirling's approximation and the formula kNa = R 

(R = 8,314 JK
-1

mol
-1

, the universal gas constant) produces the following: 

                                       ∆𝑆𝑚𝑖𝑥 = −𝑅(𝑋𝐴 𝑙𝑛 𝑋𝐴 + 𝑋𝐵 𝑙𝑛 𝑋𝐵)                                     (2.9) 

As the values of XA and XB are less than one, Smix is a positive number, i.e. mixing of atoms 

is associated with an increase of entropy. The change of Gibbs free energy relevant to mixing 

of atoms is therefore equal to: 

                                         ∆𝐺𝑚𝑖𝑥 = 𝑅𝑇(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)                                   (2.10) 

 

           Fig. 2.3 Change of Gibbs free energy induced by mixing of atoms, ideal solution 

Gmix low T 

high T 
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Fig. 2.3 shows Gmix as a function of system composition and temperature. The actual Gibbs 

free energy in solution G will be also dependent on values of GA and GB. Combination of 

equations (2.2), (2.3) and (2.10) hence produces: 

                     𝐺 = 𝐺2 =  𝑋𝐴𝐺𝐴 +  𝑋𝐵𝐺𝐵 +  𝑅𝑇(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)                  (2.11) 

This is shown in the diagram in Fig. 2.4. Rising temperature results in decrease of values GA 

and GB and the curve depicting Gibbs free energy will reflect a greater curvature. The drop of 

values GA and GB relates to heat entropy of both components, G is decreasing while the 

temperature rises at the rate given by –S. 

 

                          Fig. 2.4 Molar Gibbs free energy for an ideal solid solution 

2.3 Chemical Potential 

The point of interest pursued in solid solutions (alloys) is the change of free energy within 

particular phase in the case when the number of atoms in the system is increased or reduced. 

Adding a small quantity of atoms of A, i.e. dnA moles, to a large volume of phase at a 

constant temperature and pressure, the size of system will increase by dnA, therefore even the 

Gibbs free energy within the system will grow by a small value of dG´. In case dnA is 

sufficiently low, dG´ will represent the proportional quantity of extra atoms of A: 

                                            dG´=AdnA (T, p, nB constant)                                     (2.12) 

The constant of proportionality A is called the partial molar free energy of component A or 

the chemical potential of component A within the particular phase. A depends on 

composition of the phase; therefore dnA must be low enough to prevent a substantial change 

G2 
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to the composition of the solution. The chemical potential of component A is defined as 

follows: 

                                                       𝜇𝐴 =  (
𝜕𝐺´

𝜕𝑛𝐴
)

𝑇,𝑝,𝑛𝐵

                                                     (2.13) 

The Gibbs free energy G´ is related towards the entire system. The regular symbol G is used 

to mark the molar Gibbs free energy, it is therefore independent on the system size. A similar 

equation can be written for the chemical potential of component B. 

Separate contributions can be added up for a binary solution at constant temperature and 

pressure as follows: 

                                               𝑑𝐺´ =  𝜇𝐴𝑑𝑛𝐴 +  𝜇𝐵𝑑𝑛𝐵                                                (2.14) 

This equation could be further expanded for solutions containing more than two components. 

If changes of temperature and pressure are permitted, the general equation will be in this 

form: 

                                 𝑑𝐺´ =  −𝑆𝑑𝑇 + 𝑉𝑑𝑝 + 𝜇𝐴𝑑𝑛𝐴 + 𝜇𝐵𝑑𝑛𝐵 + ⋯                     (2.15) 

If 1 mole of the initial phase contained XA moles of component A and XB moles of component 

B, the system size may increase without any change of the phase compositions provided the 

components A and B have been added at the correct ratio: dnA : dnB = XA : XB. Example: if 

the phase contains double the amount of A atoms compared to the quantity of B atoms (XA = 

2/3 and XB = 1/3), the composition can be preserved even after addition of two atoms of A per 

one atom of B (dnA : dnB = 2). This method enables enlarging the system by 1 mole without 

any change of A or B. Adding XA moles of the component A and XB moles of the 

component B will increase the free energy within the system by the amount of molar Gibbs 

free energy G accordingly. 

                                                   𝐺 =  𝜇𝐴𝑋𝐴 + 𝜇𝐵𝑋𝐵      (Jmol
-1

)                                    (2.16) 

Knowledge of the dependency of molar Gibbs free energy on XA and XB helps determination 

of A and B by extrapolation of tangent to the curve G on the axis for pure components A 

and B, Fig. 2.5. It is evident that the values of A and B are going through systematic 

changes with respect to the phase composition. 

Comparison of equations (2.11) and (2.16) will produce an expression of chemical potential 

of A and B for an ideal solution in the following form: 
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                                                         𝜇𝐴 = 𝐺𝐴 +  𝑅𝑇 ln 𝑋𝐴                                             (2.17) 

                                                          𝜇𝐵 = 𝐺𝐵 +  𝑅𝑇 𝑙𝑛 𝑋𝐵                                            (2.18) 

For graphic depiction of these equations refer to the Fig. 2.6. The distance ac matches the 

expression      – RTln XA and the distance bd is equal to –RTln XB. 

 

Fig. 2.5 Relation between the curve of Gibbs free energy for a solid solution and chemical 

potentials of components 

 

 

Fig. 2.6 Relations between the curve of Gibbs free energy and chemical potentials for an ideal 

solution 

2.4 Regular Solutions 

The development of a solid solution (mixing of atoms) is usually based on an endothermic or 

exothermic reaction in practice. The above mentioned model applicable to an ideal solution 

can therefore be extended with Hmix using the so called "quasi-chemical approach". This 

model assumes that the heat for mixing (Hmix) is associated with the bonding energy 

between adjacent atoms only. Volumes of pure components A and B must be necessarily 

G 
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identical and unchangeable during mixing, so the interatomic distances and bonding energies 

are independent on the composition. 

The structure of a binary solid solution may contain three different types of interatomic bonds 

between atoms belonging to components A or B: 

1. A – A bonds, the energy per bond is equal to AA,  

2. B – B bonds, the energy per bond is equal to BB,  

3. A – B bonds, the energy per bond is equal to AB. 

Assuming that zero energy matches the condition, when atoms are mutually distant almost to 

infinity, the values of AA, BB and AB are negative, whereas the stronger their bonds, the 

greater their negativity will become. The internal energy of solid solution will depend on the 

number of bonds of the specific type PAA, PBB and PAB: 

                                              𝐸 =  𝑃𝐴𝐴𝜀𝐴𝐴 + 𝑃𝐵𝐵𝜀𝐵𝐵 + 𝑃𝐴𝐵𝜀𝐴𝐵                                 (2.19) 

Before mixing atoms of A and B, the system contains bonds A – A and B – B. Bearing in 

mind the relations between PAA, PBB and PAB in the solid solution, the change of internal  

energy induced by mixing of atoms is given by: 

 

                                                            ∆𝐻𝑚𝑖𝑥 = 𝑃𝐴𝐵𝜀                                                     (2.20) 

Where:  

                                                   𝜀 =  𝜀𝐴𝐵 −
1

2
(𝜀𝐴𝐴 + 𝜀𝐵𝐵)                                           (2.21) 

If  = 0, Hmix = 0 and the solution is ideal. Atoms will be arranged in a random configuration 

in this case and the mixing entropy is defined by the following equation:  

                                          ∆𝑆𝑚𝑖𝑥 = −𝑅(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)                                 (2.22) 

Number of A-B bonds can be expressed: 

                               𝑃𝐴𝐵 =  𝑁𝑎𝑧𝑋𝐴𝑋𝐵     (number of bonds per 1 mole)                         (2.23) 

where Na is the Avogadro's number and z is the number of bonds per atom. 

If   0, the atoms within solution will prefer being surrounded by atoms of the opposite type 

and this even will increase the value PAB. 

If   0, the number of bonds PAB will tend to remain lower than in a solution with random 

configuration. Nevertheless, if the values of  are not so far from zero, the equation (2.23) still 

represents a fair approximation: 
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                                                       ∆𝐻𝑚𝑖𝑥 =𝑋𝐴𝑋𝐵                                                        (2.24) 

where:  = Naz. 

Real solutions behaving in compliance with the equation (2.24) are defined as regular 

solutions. The change of Hmix depending on composition is parabolic and it is depicted in 

Fig. 2.7, which clearly implies graphic determination of  .  

 

    Fig. 2.7 Change of Hmix with the composition of regular solutions 

 

2.5 Activity 

The equation (2.17) applied to chemical potential within an ideal solution is simple; it is 

therefore desirable to define a similar equation for any solution. That can be achieved by 

defining the activity of component in such manner that the Fig. 2.8 shows the distance ac 

equal to the value of – RTln aA and the distance bd matches the value of – RTln aB. In this 

case: 

                        𝜇𝐴 = 𝐺𝐴 + 𝑅𝑇𝑙𝑛 𝑎𝐴        a      𝜇𝐵 = 𝐺𝐵 + 𝑅𝑇𝑙𝑛 𝑎𝐵                          (2.25) 

per mole 
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Fig. 2.8 Mutual relationship between the molar Gibbs free energy and activity 

 

The values aA and aB will be generally different from values of XA and XB and the relation 

between these parameters will be changed with composition of the solution. Assuming that 

the crystal structures of pure components A and B are identical, the relationship between 

activity and molar fraction for any solid solution may be expressed graphically, as shown in 

the Fig. 2.9. Line 1 represents an ideal solid solution, where aA = XA and aB  = XB. If Hmix  0, 

the activity of components of the solid solution will be lower compared to an ideal solid 

solution (curve 2) and vice versa; if Hmix  0, the activity of components in a solid solution 

will be greater compared to an ideal solid solution (curve 3). 

The ratio of activity and molar fraction is usually defined as the coefficient of activity of the 

particular component: 

                                                𝛾𝐴 =
𝑎𝐴

𝑋𝐴
                                                                              (2.26) 

A diluted solution of component B in component A can be defined as: 

                                              𝛾𝐵 =
𝑎𝐵

𝑋𝐵
≅ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (Henry's law)                      (2.27) 

And 

                                              𝛾𝐴 =
𝑎𝐴

𝑋𝐴
 1    (Raoult's law)                                        (2.28) 

These equations can be applied to any solutions if diluted sufficiently. The component activity 

is just another way to describe the condition of a particular component of solid solution 

besides its chemical potential. Both the activity and chemical potential represent a measure of 

tendency of an atom towards leaving the solid solution. If the value of activity or of chemical 
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potential is low, atoms will be reluctant to leave the solid solution, which means that e.g. 

component vapour pressure in equilibrium with the solid solution will be relatively low.  

 
                                             a)                                                     b)  

Fig. 2.9 Change of activity depending on composition, a) aB b) aA. Line 1: ideal solid solution 

(Raoult's law), curve 2: Hmix  0, curve 3: Hmix  0. 

2.6 Real Solutions  

The model mentioned above represents a useful description of the effect of configuration 

entropy and interatomic bond on the free energy in binary solutions but its use in practice is 

limited. This model is a way too great simplification of reality for many systems and it is 

unable to predict correct dependency of Gmix on composition and temperature.  

As far as alloys with mixing enthalpy different from zero ( and  ≠ 0) are concerned, it may 

be assumed that the random configuration of atoms represents an equilibrium or the most 

stable configuration of atoms, which is not true and the calculated values of Gmix will not 

correspond with the minimum of Gibbs free energy. The actual configuration of atoms will be 

a compromise that enables achievement of the lowest value of the internal energy with 

sufficient level of entropy to achieve the minimum value of Gibbs free energy. The internal 

energy in systems, where   0, is reduced by increasing number of bonds type A – B, i.e. the 

configuration of atoms, as shown in the Fig. 2.10a. If    0, the internal energy can be 

reduced by increasing the number of bonds type A – A and B – B, i.e. clustering of atoms in 

areas abundant with atoms of either A or B, Fig. 2.10b. The level of ordering or clustering of 

atoms will be reduced with rising temperature due to the increasing importance of entropy.  

Systems with differences in atom size are associated with quasi-chemical models 

underestimating the change of internal energy during mixing of atoms, as these disregard the 

elastic distortion fields. If the difference in atom size is significant, this effect may prevail 
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over the chemical term. If the difference in atom size is great, the interstitial solid solutions 

should be selected as more convenient from the energetic prospective, see Fig. 2.10c. Systems 

with strong chemical bond between atoms show tendencies towards development of 

intermetallic phases.  

The rules associated with events of atom ordering (short- or long-range) in solids and basic 

characteristics of individual types of intermediary phases have been defined in the textbook of 

the course Structure and Properties of Solids.   

 
                                a)                                 b)                                c)     

Fig. 2.10 Diagram showing the real solid solutions, a) Substitutional solid solution with long-

range ordering, b) Clustering of atoms of the same type, c) Interstitial solid solution. 

2.7 Equilibrium in Heterogeneous Systems 

It is fairly common that pure components A and B do not feature an identical crystal structure 

at the temperature level considered. Such cases must be documented by two curves Gibbs free 

energy – one for each structure. Stable forms of pure components A and B at the particular 

temperature (and pressure) will be marked  and . Let us assume that  features the FCC 

structure and the  will form the BCC structure. The molar free energy of pure component A 

with FCC structure shown in Fig. 2.11 is marked with the letter a, whereas the molar free 

energy of pure component B with BCC structure is marked with the letter b. The first step in 

drafting of the curve showing Gibbs free energy for the phase  with FCC structure lies in 

transforming the atoms of B from the stable BCC structure into an unstable configuration of 

FCC lattice. This step requires an increase of Gibbs free energy from point b to point c. This 

stage therefore allows drafting the curve showing Gibbs free energy for the phase   by 

mixing of atoms of pure components A and B with FCC structure – see Fig. 2.11a. The value 

of Gmix for phase  with composition X is defined by the abscissa de. A similar procedure 

can be adopted for drafting the molar Gibbs free energy for phase . The abscissa af in Fig. 

2.11b reflects the transformation of atoms of pure component A from FCC into the BCC 

lattice. The Fig. 2.11b clearly shows that the lowest Gibbs free energy of binary alloys rich in 



Phase Transformations 
__________________________________________________________________________________ 

16 
 

component A will be identical to that of homogeneous  phase and the lowest Gibbs free 

energy of binary alloys rich in component B will be identical to that of homogeneous  phase. 

The situation is more complicated for alloys located near intersection formed by free energy 

curves. These cases can serve as evidence, that the total Gibbs energy can be minimised when 

allocating atoms into two phases.   

  

Fig. 2.11 a) Curve of molar Gibbs free energy for phase , b) Curves of molar Gibbs free 

energy for phases  and   

The first aspect to be considered is the general characteristics of diagrams showing the molar 

Gibbs free energy in presence of phase mixtures. Let us assume we have an alloy comprising 

phases  and  with the molar Gibbs free energy of G

 and G


 respectively, Fig. 2.12. If the 

total composition of phase mixtures is equal to 𝑋𝐵
𝑜 , the relative number of moles of phases  

and  is defined by the lever rule. The molar Gibbs free energy G in mixture of phases is 

defined by the point located on a straight line linking points  and . That can be verified by 

means of geometric analysis, see Fig. 2.12. Vectors ad and cf represent the molar Gibbs free 

energy of phases present within an alloy. Point g lies in the intersection of vectors be and dc, 

so bcg and acd as well as deg and dfc represent similar triangles. The above implies that bg/ad 

= bc/ac and ge/cf  = ab/ac. The lever rule states that 1 mole of alloy contains bc/ac moles of 

phase  and ab/ac moles of phase . That implies both bg and ge represent separate 
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contributions of phases  and  to the total Gibbs free energy of 1 mole of the alloy. The 

vector be represents the molar Gibbs free energy in mixture of phases  + .  

 

              Fig. 2.12 Changes of molar Gibbs free energy in mixture comprising two phases 

Let us assume an alloy with composition X
o
, as shown in Fig. 2.13a. If the atom configuration 

corresponds with a homogeneous phase, then the free energy will be at its lowest in case of 

phase  , i.e. 𝑋𝑜
 per 1 mole. However, the facts above imply that the system is able to reduce 

its Gibbs free energy provided the atoms separate to form two phases of certain composition, 

e.g. 1 and 1. The Gibbs free energy within the system will be reduced to the value of G1 in 

this case. Further reduction of free energy can be achieved in case, when the atoms of 

components A and B keep migrating between phases  and  until producing the 

compositions e and e. In this case, the free energy within the system will be at the minimum 

level and e and e represent equilibrium compositions of phases  and .  

This result is applicable in general and it can be applied to any alloy with its composition 

between e and e – the only changes happening here will concern the relative quantities of 

both phases in accordance with the lever rule. For alloy compositions found outside this 

interval the minimum Gibbs free energy lies on curves G

 and G


 and the equilibrium state of 

alloy corresponds with one homogeneous phase only.  

The Fig. 2.13 implies that tangents to curves of the Gibbs free energy found in equilibrium 

compositions of phases  and  are identical. In other words, one component needs to have 

identical chemical potential in both phases. That means the following applies to 

heterogeneous equilibrium: 

                          𝜇𝐴
 =  𝜇𝐴


     and        𝜇𝐵 

𝛼 =  𝜇𝐵
𝛽

                                           (2.29) 

            G 
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The prerequisite for equilibrium within a heterogeneous system comprising two phases can be 

also expressed using the activity concept.  A heterogeneous system comprising more than one 

phase can contain pure components of various crystalline structures. The most stable 

conditions with the lowest Gibbs free energy are usually defined as a state, where pure 

components adopt unit activity. As far as the discussed case is concerned, this is the situation, 

when the activity of component A in phase  composed by A (pure component) equals to 1, 

i.e. XA = 1, 𝑎𝐴
𝛼 = 1 and similarly XB = 1, 𝑎𝐵

𝛽
 = 1. This definition of activity is depicted in Fig. 

2.14a. Figs. 2.14b and 2.14c show changes to activity of components A and B with 

composition of phases  and . The areas with a single stable phase, i.e. A - e and e – B are 

associated with changing values of activity (or chemical potential) and ideal solutions should 

be considered to simplify the example, as these feature linear dependencies between the 

activity and composition.  

 

Figs. 2.13 a) The Gibbs free energy in an alloy with composition X
o
 is equal to G1 for a 

mixture of phases with composition including 1 and 1, b) with regards to the equilibrium, 

the minimum of Gibbs free energy of the alloy X
o
 is equal to Ge  and this alloy  comprises a 

mixture of phases including e and e 

𝐺𝑒
𝛼

G 
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Figs. 2.14a – c Changes of activities aA and aB with composition for a system comprising 

ideal solutions  and  

The composition of equilibrium phase between e and e remains unchanged and activities 

remain unchanged. In other words, if there are two phases in equilibrium, activities of 

components within these phases must be identical: 

                                       𝑎𝐴
𝛼 = 𝑎𝐴 

𝛽
    and    𝑎𝐵

𝛼  = 𝑎𝐵
𝛽

                                                   (2.30) 

 

2.8 Binary Phase Diagrams 

The simplest type of a binary diagram identifies a system with full solubility of components A 

and B both in liquid and solid state (ideal solutions in both cases). The changes of Gibbs free 

energy will depend on temperature changes, as shown in the Fig. 2.15. Melting temperatures 

of pure components match the situation when G
S
 = G

L
, i.e. at temperatures Tm(A) and Tm(B). 

The Gibbs free energy in both phases will be reduced as the temperature rises. These trends 

are important, as they define the relative positions of 𝐺𝐴
𝑆, 𝐺𝐴

𝐿, 𝐺𝐵
𝑆 and 𝐺𝐵

𝐿 in diagrams showing 

the molar Gibbs free energy at various temperature levels. When the temperature is high, 

where T1  Tm(A)  Tm(B), the stable phase will be the liquid phase of pure components A 

and B. To simplify the example, let us assume that the liquid phase comes with a lower value 

of Gibbs free energy compared to the solid phase; this is applicable to any composition 

feasible within an A – B system. Reduction of temperature will produce two effects: the 

a) 

b) 

c) 
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values of 𝐺𝐴
𝐿 and 𝐺𝐵

𝐿 will be rising faster than values of 𝐺𝐴
𝑆 and 𝐺𝐵

𝑆 and the G curves will 

flatten out due to lower contribution of the term TSmix towards the value of Gibbs free 

energy.  

The rule at temperature level Tm(A) will be: 𝐺𝐴
𝑆  = 𝐺𝐵

𝑆 and that represents a single point within 

the binary diagram. When the temperature T2 is lower, curves of free energy will intersect and 

the common tangent means that the equilibrium state between points A and b is matched by a 

solid phase, while the interval between points c and B is associated with a liquid phase and the 

section between points b and c is matched by a mixture of two phases (S + L) with 

composition including b and c, Fig. 2.15c. These points are also marked in the phase diagram, 

Fig. 2.15f.   

The interval between temperature levels T2 and Tm(B) shows the value G
L
 rising faster than 

G
S
, therefore the points b and c in Fig. 2.15c will shift to the right in the phase diagram, 

alongside the curves of solid and liquid. When the temperature reaches final level of Tm(B), 

points b and c will converge in a single spot, which is the point d in Fig. 2.15f. When below 

the temperature level Tm(B), the Gibbs free energy of solid phase will be always below the 

value of free energy of melt and solid phase will be the stable one for any composition.  

 

Fig. 2.15 Derivation of binary diagram for full solubility in both liquid and solid state using 

curves of the Gibbs free energy for the liquid (L) and solid (S) state respectively 
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2.9 The Interface Effect on Phase Equilibrium 

The previous chapter shows curves of Gibbs free energy applicable to molar Gibbs free 

energy contained within an indefinite quantity of material in form of a perfect crystal. 

Surfaces (grain boundaries, interphase interfaces) have been ignored. However, these defects, 

while associated with other defects as dislocations or vacancies under real conditions, increase 

the Gibbs free energy of phases. The minimum Gibbs free energy of alloy, i.e. the 

equilibrium, is not achieved until all the dislocations and interfaces have been eliminated. 

Such condition is basically unachievable under practical circumstances.  

Interphase interfaces may be extremely important at initial stages of phase transformations, 

where one phase, e.g.  , is present in form of very small particles in the matrix of  phase, 

Fig. 2.16a. If the phase  is exposed to the pressure of 1atm, the phase  is exposed to extra 

pressure p due to curvature of the / interface. If the energy contained within the inter-

phase / interface is  and the particles are spherical objects with the radius r, the value of 

p is then approximately defined by the following formula:  

                                                         p = 
2𝛾

𝑟
                                                    (2.31) 

The expression for Gibbs free energy contains the term pV, therefore increasing the pressure 

must induce a rise of Gibbs free energy. For constant temperature: 

                                                         G = pV                                                              (2.32) 

The contribution of curvature of particles within the phase  shown in the diagram of Gibbs 

free energy versus composition, see Fig. 2.16b, can be expressed as follows: 

                                                    ∆𝐺𝛾 =
2𝛾𝑉𝑚

𝑟
                                                  (2.33) 

where Vm refers to the molar volume of phase .  

This increment of Gibbs free energy due to interfacial energy is defined as the capillary effect 

or Gibbs – Thomson effect. Composition of the phase , which is in equilibrium with 

particles with the radius r, corresponds with the value of Xr. 
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                 Fig. 2.16 Effect of interfacial energy on solubility of small particles 

 Summary of terms in this chapter  

Ideal Solid Solution: mixing of atoms of A and B does not release or absorb any heat (Hmix 

= 0) 

Chemical Potential: defines the change of Gibbs free energy of the system after a small 

change to chemical composition of the system  

Regular Solid Solution: mixing of atoms of A and B releases or absorbs heat (Hmix  0) 

Coefficient of Activity: the ratio of activity and molar fraction of particular component 

(𝛾𝐴 =  
𝑎𝐴

𝑋𝐴
), it is 𝛾𝐴 = 1 for ideal solutions. 

Gibbs – Thomson Effect: increment of free energy of the phase, induced by curvature of 

interface it is also defined as the capillary effect.  It is very significant for initial stages of 

transformations.  

 Questions addressing the content covered 

1. What is the difference between an ideal and a regular solution? 
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2. Draw a diagram showing Gibbs free energy versus composition including two phases and 

define the equilibrium. 

3. How would you define activity? 

4. What characteristics are carried by chemical potential of components within a system 

comprising two phases in equilibrium?  

5. Draw a diagram showing full solubility in liquid state and limited solubility in solid state 

and choose three temperature levels to be supplemented with drawings of mutual location of 

curves representing the Gibbs free energy for phases present within. 

6. What impact does the radius of curvature of particles interface of the precipitating phase 

have on its free energy and what is its impact on the equilibrium solubility of a dissolved 

component in the master phase? 

 
Exercises 

Exercise 1 

The specific heat coefficient of solid copper exceeding 300 K can be calculated using the formula 

below: 

𝑐𝑝 = 22,64 + 6,28𝑥10−3 𝑇   (Jmol
-1

K
-1

) 

What is the increase of entropy of copper when heated from 300K to 1 358K? 

Solution:                                         𝑐𝑝 = 22,64 + 6,28𝑥10−3 𝑇 

∆𝑆 = ∫
𝑐𝑝

𝑇

𝑇2

𝑇1

𝑑𝑇 

∆𝑆300−1358 = ∫
22,64 + 6,28𝑥10−3 𝑇

𝑇

1358

300

𝑑𝑇 = 

= 40.83 Jmol
-1

K
-1 

Exercise 2 

An ideal solid solution has been formed using 15g of gold and 25g of silver.  

a) How many moles of solid solution have been produced? 

b) What are the molar fractions of gold and silver? 

c) What is the molar mixing entropy? 

d) What is the total mixing entropy? 

e) What is the change of molar free energy at 500°C? 

f) What is the chemical potential of gold and silver at 500°C, assuming that free energies of pure gold 

and silver are zero?   
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g) What would be the change of free energy in a solid solution at 500°C, after addition of one atom of 

gold? State your result in eVatom
-1

.  

Solution:  

a)        atomic weight of Au = 197 

atomic weight of Ag =108  

number of moles of Au = 15/197 = 0.076 

number of moles of Ag = 25/108 = 0.231 

number of moles of solution = 0.307 

b)  molar fraction of Au = 0,076/0.307 = 0.248 

  molar fraction of Ag = 0,231/0.307 = 0.752 

c)  Molar mixing entropy,   ∆𝑆𝑚𝑖𝑥 = −𝑅(𝑋𝐴 𝑙𝑛 𝑋𝐴 + 𝑋𝐵 𝑙𝑛 𝑋𝐵) 

  Smix =  -8.314 (0.248 ln0.248 + 0.752 ln0.752) = 4.66 JK
-1

mol
-1

 

d)  Total mixing entropy = molar mixing entropy x number of moles in solution = 

                                        4.66 x 0.307 = 1.43 JK
-1

 . 

e) change of molar free energy at 500°C:      ∆𝐺𝑚𝑖𝑥 = 𝑅𝑇(𝑋𝐴 𝑙𝑛 𝑋𝐴 + 𝑋𝐵 𝑙𝑛 𝑋𝐵) 

∆𝐺𝑚𝑖𝑥= -TSmix = -733 x 4.66 = -3.60 kJmol
-1 

f)  𝜇𝐴𝑢 = 𝐺𝐴𝑢 + 𝑅𝑇𝑙𝑛 𝑋𝐴𝑢  

    𝜇𝐴𝑢 = 0 + (8.314x773xln0.248) = - 8.96 kJmol
-1

 

    𝜇𝐴𝑔 = 𝐺𝐴𝑔 + 𝑅𝑇𝑙𝑛 𝑋𝐴𝑔 

    𝜇𝐴𝑔 = 0 + (8.314x773xln0.752) = -1.83 kJmol
-1 

g) with a very low gold addition: 𝑑𝐺´ =  𝜇𝐴𝑢𝑑𝑛𝐴𝑢(𝑇, 𝑝, 𝑛𝐵 = constant) 

at 500°C, Au = -8.96 kJmol
-1 

 1 eV = 1.6 x 10
-19

 J 

            - 8.96 kJmol
-1

 = 
− 8,96 𝑥 103

1,6 𝑥 10−19𝑥6,023𝑥1023 eVatom
-1

 = -0.1 eVatom
-1 

Adding one atom of gold will change the free energy of solid solution by -0,1eVatom
-
.
1 

Exercise 3  

The solubility ratio of silicon in aluminium is 1.25 at.% at the temperature of 550°C and 0.46 at.% at 

the temperature of 450°C. What solubility can be expected at 200°C? 

Solution: 
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  𝑋𝑆𝑖 = 𝐴 𝑒𝑥𝑝 −
𝑄

𝑅𝑇
 

  𝑙𝑛 𝑋𝑆𝑖 = 𝑙𝑛 𝐴 − 
𝑄

𝑅𝑇
 

at 550°C: ln 1.25 = lnA – Q/(8.314 x 823) 

at 450°C: ln 0.46 = lnA – Q/(8.314 x 723) 

Solution to these equations: 

  Q = 49.45 kJmol
-1 

  A = 1 721 

At the temperature of 200°C: 

  𝑋𝑆𝑖 = 1721 𝑒𝑥𝑝 (
49 450

8,314 𝑥 473
) = 0,006 𝑎𝑡. %. 
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3. Classification of Phase Transformations 

 

 
Objective:   Completion of this chapter will enable you: 

 - differentiate between phase transformations based on the thermodynamic or 

kinetic approach, 

- define basic types of phase transformations, 

- differentiate between the first or second order transformations, 

- define differences between continuous and discontinuous transformations. 

 

 
EXPLANATION 

3.1 Thermodynamic and Kinetic Classification  

Most phase transformations belong to the first order transformations, where at the 

equilibrium transformation temperature the first derivations of Gibbs free energy  𝝏𝑮
𝝏𝑻⁄  and 

𝝏𝑮
𝝏𝒑 ⁄  are discontinuous. These transformations include for example melting of solid 

substance, Fig. 3.1a. As 𝝏𝑮
𝝏𝑻⁄ =  −𝑺 and 𝝏𝑮

𝝏𝒑⁄ = 𝑽, the first rate transformations are 

associated with discontinuous changes of volume and entropy. There is also a discontinuous 

change of heat content (enthalpy, H) relevant to the development of latent heat of 

transformation.  The scope of specific heat coefficient is indefinite at the transformation 

temperature level, as adding a small amount of heat will convert more of the solid substance 

into melt without any temperature increase. These transformations enable achievement of the 

metastable state.  

Fig. 3.1b characterises the second order transformations. These transformations are 

associated with discontinuous second derivatives of the Gibbs free energy 𝝏𝟐𝑮
𝝏𝑻𝟐⁄  and 

𝝏𝟐𝑮
𝝏𝒑𝟐⁄  . Nevertheless, the first derivatives are continuous, which means the course of 

enthalpy H is also continuous. There is no development of latent heat at the transformation 

temperature, just a rapid increase of the coefficient of specific heat. These transformations 

 

 
Study time: 2.5 hours 
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cannot reach any metastable states. The second order transformations include, for example, 

the magnetic ordering in metal-based alloys.  

 

 
Fig. 3.1 Thermodynamic classification of phase transformations, a) first order transformation 

b) second order transformation, cp is the isobaric coefficient of specific heat 

Phase transformations can be characterised with respect to both nucleation and the growth 

process. As far as nucleation is concerned, phase transformations are divided to homogeneous 

and heterogeneous. The conditions for decomposition of an unstable phase in case of 

homogeneous transformations are identical at any point within the old phase. Homogeneous 

transformations can be typically represented by the spinodal decomposition. On the other 

hand, regarding heterogeneous transformations developed by formation of nuclei of the new 

phase, such nuclei start evolving at preferential spots within the old phase already. 

Heterogeneous transformations can be divided into three groups depending on the effect 

controlling the growth of the new phase, see Fig. 3.2. Referring to the thermally activated 

growth, phase transformations can be divided pursuant to the distance migrated by particular 

atoms: either short or long distance. The short distance migration is typical for single-
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component systems exhibiting allotropy. For basic classification of diffusion transformations 

associated with relocation of atoms over long distances see also the Fig. 3.2.  

 

PHASE TRANSFORMATIONS 

 

Heterogeneous                                                                                                 Homogeneous 

                                                                                              (Spinodal decomposition) 

 

 

Athermal growth                         Thermally activated growth             Heat flow controlled growth     

(Martensitic transformation)                                                                           (Solidification) 

 

 

Short-range migration                                                                             Long-range migration 

       (Allotropic transformations)    

 

                                                         Continuous transformation     Discontinuous                    

                                                                                                            transformation 

                                                                                                           (Eutectoid transformation)     

 

 

 

                                        Controlled by interface                         controlled by volume diffusion 

                          (Precipitation and dissolution of phases)         (Precipitation and dissolution of phases) 

                                       Fig. 3.2 Kinetic classification of phase transformations 

Heterogeneous transformations: significant changes in atomic configurations within very 

small volumes, which are initially associated with the increase of Gibbs free energy in the 

system (at T = const., p = const.). Overcoming of the energetic barrier is followed by 

nucleation of a stable nucleus with subsequent growth of transformed areas. 

Homogeneous transformations: fluctuations associated with minor changes to configuration 

of atoms within large volumes. Nucleation takes places throughout the entire system volume 

simultaneously and it is followed by a gradual decrease of Gibbs free energy. 

Another option to divide transformations is represented by the growth mechanism (kinetic 

aspect): 



Phase Transformations 
__________________________________________________________________________________ 

29 
 

Athermal growth: the rate of growth is not dependent on temperature; there is a certain 

similarity with plastic deformation.  

Thermally activated growth: the interface movement is driven by means of repeated 

overcoming of energetic barriers; this growth mechanism is strongly dependent on 

temperature.  

Growth controlled by heat flow: the interface movement speed depends on the intensity of 

supply or dissipation of heat in the area of interphase interface.  

There are two different cases of thermally activated growth: 

Migration of atoms over a short distance: the phases on both sides of interface do not differ 

in terms of chemical composition. 

Migration of atoms over a long distance: the phases on both sides of interface differ in terms 

of chemical composition. 

Migration of atoms over a long distance can be further divided into two different cases: 

Continuous reaction: development of areas with a new phase results in changes of chemical 

composition within the whole remaining volume of the initial phase. 

Discontinuous reaction: chemical composition of the initial phase is identical to the average 

composition of product resulting from a discontinuous reaction; however, the product of 

discontinuous reaction is composed of two phases of different compositions. 

 Questions addressing the content covered 

1. What are the basic characteristics of the first order transformations? 

2. What are the basic characteristics of the second order transformations? 

3. What is the division of transformations with respect to the growth mechanism? 

4. What is the difference between continuous and discontinuous phase transformations? 

5. Why do certain phase transformations require a diffusion over a long distance? 

6. What is the meaning of "athermal growth"?  

7. What is a thermally activated process? 

 

 
Exercises 

Exercise 1 
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Based on this resource material, use the classification of phase transformations above to perform 

detailed categorisation of:             a) Martensitic transformations, 

                                                     b) Massive transformations, 

                                                     c) Bainitic transformations.     
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4. Interfaces in Solids and Their Migration 

 

 
Objective:   Completion of this chapter will enable you: 

  - Define basic types of interfaces in solids, 

- Characterise of contributions of interphase surface energy and the elastic strain 

energy to particular types of interfaces,  

- Explain the effect of interfaces on the rate of interface movement, 

- Define the principle of movement of a glissile and non-glissile interfaces   

 

 
EXPLANATION 

Interfaces in solids may be divided into the following three groups pursuant to their atomic 

structure: 

    - Coherent, 

    - Semicoherent, 

    - Incoherent. 

4.1 Coherent Interface 

For this type of interface, the perfect match at the interfacial plane is typical, i.e. the atomic 

configuration of an interface is identical in both phases, Fig. 4.1. That requires a specific 

mutual alignment of adjacent crystals, which can be expressed by means of the so called 

crystallographic orientation relationship defined by two parallel crystallographic planes 

(hkl) with low Miller indices in these crystals (phases) and two parallel directions uvw lying 

in these parallel planes. Adjacent crystals may have an identical or different crystal structure 

and their chemical compositions may differ.  

 

 
Study time: 4 hours 
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                                      a)                                                     b)          

Fig. 4.1 Non-deformed coherent interfaces, a) The structures of adjacent crystals are 

identical, their chemical compositions differ, b) The structures of adjacent phases  and  are 

different.   

The arrangement of adjacent atoms within each phase is optimal to achieve a low level of the 

total system energy. However, the interface is usually affected by a change in composition, so 

each atom has partially improper neighbours over the interface. That increases the energy of 

atoms at the interface to produce a chemical contribution to the interfacial energy. That is the 

only contribution to interfacial energy in case of coherent interface: 

                                                              coh = chem                                                                                    (4.1) 

If the crystal structure of adjacent phases is identical, while their lattice parameters differ, 

coherence of interface can be maintained by distortion of one or both crystal lattices, Fig. 4.2. 

The resultant elastic distortions of crystalline lattices in the interface area are defined as 

coherence strains.   

  

Fig. 4.2 Coherent interface with a minor misfit of crystal lattices resulting in development of 

coherence elastic strains. 

 
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A substantial contribution to the total energy of coherent interfaces is usually represented by 

the coherent elastic deformation; the contribution of interphase surface energy is low.    

4.2 Semicoherent Interface     

Deformations associated with the coherent interface increase the total system energy, if there 

is a truly high misfit of crystal lattices or if the surface of interface is large, the coherent 

interface should be conveniently replaced with a semi-coherent one to gain energetic benefit, 

as the semi-coherent interface is subject to periodical reduction of misfit in the interface by 

means of dislocations ("misfit dislocations"), Fig. 4.3. 

 

Fig. 4.3 Semicoherent interface, misfit of lattices along the direction parallel with interface is 

accommodated by a series of edge dislocations 

If d and d are non-deformed interplanar distances between planes of phases  and   in the 

area of interface, the misfit between both lattices is defined by the formula: 

                                                                            
αd

αd
β

d
δ


                                                                      (4.2) 

Lattice misfit in an interface can be eliminated almost perfectly using a suitable configuration 

of dislocations within the interface, except for areas around the dislocation cores, where the 

structure is distorted to a high extent.  

The interphase surface energy of a semi-coherent interface is formed by two contributions: the 

chemical contribution chem (similar to the coherent interface) and the structural interface str, 



Phase Transformations 
__________________________________________________________________________________ 

34 
 

that represent sufficient energy induced by distortions around the cores of "misfit" 

dislocations: 

                                                semi-coh = chem + str                                                   (4.3) 

The structural contribution str to interfacial energy for low values of the lattice misfit will be 

approximately proportional to the density of dislocations within the interface. If   0.25, i.e. 

there is one dislocation per every fourth interplanar distance, distorted areas around 

dislocation cores will overlap and the interface is considered incoherent.  

4.3 Incoherent Interface  

If there is a significant difference in atomic configurations within the interfacial plane of 

adjacent crystals, there is no chance of fine match between atomic configurations over the 

interface. Atomic configurations in either phase may be very different; or even if similar, the 

interatomic spacing may differ by more than 25 %. Generally speaking, an incoherent 

interface develops, when two randomly aligned crystals are bonded alongside any interfacial 

plane, Fig. 4.4. This interface may exist even in case there are two phases with an orientation 

relationship, if the atomic configurations in the interfacial plane of both phases are very 

different.  

 

Fig. 4.4 Incoherent Interface 

As far as incoherent interfaces are concerned, the dominant role is played by the interfacial 

surface energy. The coherent strain energy will be zero. Nevertheless, even an incoherent 

interface may be associated with the energy supplemented by the elastic deformation energy. 
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That happens in cases with significant differences between the volume of old and new phases, 

respectively.  

4.4 Interface Migration  

Most phase transformations in metal systems are conducted by means of nucleation and 

growth processes. An interface is created at the nucleation stage and it subsequently migrates 

into a metastable matrix during the growth stage. Growth brings relocation of atoms via the 

moving interface.  This is the heterogeneous type of transformation: the system can be split 

into the master and resultant phases at any moment during the transformation process.  

There are two types of interfaces: glissile and non-glissile. A glissile interface migrates in 

terms of a coordinated sliding movement of dislocations, which induces shear transformation 

(deformation) of the source phase into a new phase. The movement of a glissile interface is 

relatively independent from temperature; it is therefore called an athermal growth. However, 

most of the interfaces are of non-glissile type and these migrate with more or less random 

atom jumps across interfaces. The additional energy required by atoms to execute a free jump 

from an old phase and join a new phase is supplied by means of thermal activation. That 

makes migration of any non-glissile interface strongly dependent on temperature.   

4.4.1 Migration of Non-Glissile Interface 

If there is any difference between chemical composition of matrix and the new phase, the 

growth of such new phase will require diffusion over a long distance. Fig. 4.5 shows a 

situation, when the precipitating phase  consisting of the almost pure component B grows 

with the planar interface into the phase  (rich in component A) with the initial composition 

Xo , Fig. 4.5c. The growth of precipitate causes depletion of the matrix  in the vicinity of the 

/  interface in component B, so the concentration Xi of component B in phase  in the 

vicinity of the interface drops below the average concentration present in the phase , Fig. 

4.5a. As the growth of precipitate requires flow of atoms of B from the phase  into the phase 

, there must be a driving force across the interface i, Fig. 4.5b. The origin of this 

difference in chemical potentials is evident from Fig. 4.5c. To enable growth, the 

concentration of component dissolved within the interface must exceed the equilibrium 

concentration Xe. In case the interface mobility is very high, e.g. incoherent interface, ∆𝜇𝐵
𝑖

 can 

be very low and Xi  Xe. These conditions create a local equilibrium at the interface. The 

interface then moves as fast as allowed by diffusion and growth occurs under conditions 

controlled by the volume diffusion. Examples of this mechanism may include solidification 

and diffuse transformations in solids. 
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In case the interface mobility is low, the reaction within requires a larger differential of the 

chemical potential (∆𝜇𝐵
𝑖 ) and here will be a deviation from the local equilibrium within the 

interface. The value of Xi complies with the prerequisite concerning equal flow of atoms of B 

via the interface and phase  (𝐽𝐵
𝑖  = 𝐽𝐵

𝛼) and the interface will be moving under combined 

control conditions. As far as the limiting case of very low mobility is concerned, Xi  Xo and 

(𝜕𝑐
𝜕𝑥⁄ ) interface is almost equal to zero. These conditions imply the growth controlled by 

interface and there is the maximum driving power possible ∆𝜇𝐵
𝑖   across the interface.    

 

Fig. 4.5 Movement of interface with long-range diffusion,  a) Composition profiles across the 

interface, b) Origin of driving force for migration of interface into phase , associated with 

differences in chemical potential () of component B across the interface, c) schematic 

diagram of molar free energy showing relations among ∆𝜇𝐵
𝑖 , Xi and Xe. Solubility of 

component A in phase  is so low that the full shape of curve showing the free energy of phase 

 could not be depicted.  

 

 

Volume diffusion  

 Interface control 
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4.4.2 Migration of Glissile Interface 

There are some circumstances, under which dislocations within a semi-coherent interface can 

be arranged in such manner that the interface may move by means of a coordinated glissile of 

dislocations present within the interface. That is possible in case, when dislocations have the 

Burgers vector enabling their glissile movement on the connecting atom planes in both 

adjacent crystals, Fig. 4.6. Glissile planes must pass across the interface smoothly but they do 

not have to be mutually parallel. Any moving dislocation would shift the lattice above glissile 

plane with respect to the plane below by the distance corresponding to the Burgers dislocation 

vector. The slip of dislocations within a glissile interface coordinated in the same manner 

causes a shear deformation of lattice, e.g. shear transforms the phase  into the phase . 

 

                             Fig. 4.6 Principle of glissile interface  

The glissile interface can be illustrated by an example comprising the interface between FCC 

and HCP lattices. As you already know, both the FCC and HCP lattices can develop by 

stacking of atomic planes with the closest atomic configuration represented by solid spheres 

of identical size. With centres of atoms contained within the first layer marked with letter A, 

the second layer may occupy either positions B or C, Fig. 4.7. Assume that atoms in the 

second layer occupy B positions. This situation then shows two non-equivalent methods for 

creating the third layer.  

Interfacial dislocations           

Macroscopic 

interface  

plane  

         

 Corresponding 

glissile planes 
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 Fig. 4.7 Positions of atoms in close-packed layers represented by solid spheres of identical 

size   

In case the third layer is located right above the first layer, the stacking sequence is defined as 

ABA and repeating this sequence creates the ABABABAB..…. configurations, which 

matches the HCP lattice. The basal plane features Miller - Bravais indices (0001) and the 

directions with the closest arrangement of atoms conform to the type 112̅0.  

In case the atoms contained within the third layer occupy positions C, the resultant sequence 

will be ABC and it will form the ABCABCABC..…. configuration when repeated, this is 

typical for a FCC lattice, Fig. 4.7. The plane with the closest atomic configuration exhibits 

Miller indices 111  and the close-packed directions conform to the type 110.  

The spacing of B and C positions within the FCC lattice, measured along the plane parallel 

with the plane containing the closest atomic configuration, is equal to the vector type 
𝑎

6
 112. 

This vector relates to the Shockley partial dislocation, which is shorter than the shortest vector 

linking two atoms within the FCC lattice. In case a dislocation with the vector 
𝑎

6
 112̅ slides 

between two planes (111) within the FCC lattice, e.g. between layers 4 and 5 in Fig. 4.8, all 

the planes above the slip plane (5, 6, 7…) will be shifted by vector 
𝑎

6
 112̅. All the atoms at 

positions marked B are shifted to C positions above the slip plane, atoms from C positions are 

shifted to A positions and those from the A positions are shifted to B positions, Fig. 4.8.   
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Fig. 4.8 Edge dislocation with Burgers vector 
𝑎

6
 112̅ on slip plane (111). The space behind a 

moving dislocation shows local changes in sequence of atomic planes (111) 

The sliding movement of Shockley dislocation disrupts the crystal lattice and causes a 

stacking fault in the slip plane. Fig. 4.8 documents that such stacking fault includes four 

atomic planes with the CACA stacking sequence matching a HCP lattice. As far as 

thermodynamically stable FCC lattice is concerned, a stacking fault represents an area with 

high free energy. On the other hand, in case the FCC lattice is metastable with respect to the 

HCP lattice, the energy of stacking fault will be actually negative and the sliding of Shockley 

dislocations will reduce the system free energy.  

Assume the impact of another moving dislocation with Burgers vector 
𝑎

6
 112̅ between layers 

6 and 7 in Fig. 4.9. It is evident that the area with HCP structure has been extended by two 

more layers. That implies the configuration of Shockley dislocations at every second plane 

(111) within the FCC lattice may create a glissile interface separating the crystals of FCC and 

HCP, Fig. 4.10. Slip planes of interfacial dislocations run from the FCC into HCP lattice 

continuously and Burgers vectors lying within the sliding plane form an angle with the 

macroscopic plane of the interface. If such set of dislocations slides into a FCC crystal; it will 

result in transformation of FCC  HCP, whereas the movement of the set of dislocations in 

the opposite direction would cause a reversed transformation of HCP  FCC. From the 

macroscopic point of view, the interface plane makes an angle with the plane (111), or (0001) 

respectively; and this plane does not have to be parallel to any other plane with low indices, 

i.e. it may be irrational. However, the microscopic view shows interface comprising coherent 

facets parallel with the planes (111) FCC or (0001) HCP respectively, separated by cascades 

matching the thickness of two close – packed atomic layers. 

HCP 

slip plane 
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Fig. 4.10  Configuration of Shockley dislocations creating a glissile interface between FCC 

and HCP crystals, the macroscopic plane of interface is inclined to planes (111) 

One of the important characteristics of the glissile interface is that its movement may induce a 

macroscopic change to the crystal shape. The transformation of FCC  HCP is shown in the 

Fig. 4.11. Once a single FCC crystal is transformed into a HCP lattice by passing through the 

Shockley dislocation with identical Miller indices at every second plane (111), the 

macroscopic change of crystal shape occurs and it is similar to deformation by shear, Fig. 

4.11a. Nevertheless, the plane (111) contains further two Shockley dislocations than can be 

used during transformation of FCC  HCP. If the transformation of FCC  HCP occurs 

with all three Shockley dislocations applied in equal numbers (Burgers vectors lie in the plane 

(111) and make angles of 120° each to other)), no change in crystal shape will occur, Fig. 

4.11b.  

Fig. 4.9 Movement of two partial Shockley dislocations along two planes (111) FCC 

within the lattice separated by one layer (111) creates a HCP crystal with the 

thickness of 6 atomic layers 

FCC 
HCP

FCC 

FCC 

HCP

FCC 

Macroscopic plane of 

interface 
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Fig. 4.11 Schematic depiction of various options for the transformation FCC  HCP, a) 

using a Shockley dislocation of single type at every second plane (111) - shape change 

occurs, b) using the same number of all three types of Shockley dislocations possible at every 

second  plane (111) – no macroscopic change of crystal shape 

The glissile interface plays a vital role during martensitic transformations inducing 

macroscopic changes of crystal shape but the chemical composition of the parent phase and 

martensite remains the same. 

 Summary of terms in this chapter  

Interphase interface: an interface separating two phases. 

Coherent interface: an interface with perfect atomic coherence within the interfacial plane. If 

there are two adjacent phases with identical crystal structure but their lattice parameters are 

slightly different, the misfit of lattice planes can be accommodated by coherent elastic 

deformations. 

Semicoherent interface: misfit within the coherent interface reaches such an extent that it 

must be accommodated by the formation of dislocations.   

Incoherent interface: the interfacial plane of adjacent crystals features very different atomic 

configurations; there is no possibility of good coherence within atomic configuration across 

the interface plane. An incoherent interface is characteristic for the high value of interfacial 

surface energy, whereas the contribution of coherent deformation energy is equal to zero. 

Glissile interface: this interface contains dislocations with the Burgers vector which lies in 

FCC HTU 



Phase Transformations 
__________________________________________________________________________________ 

42 
 

the slip planes of both old and new phases. Coordinated movement of these dislocations 

results in phase transformation, which may be accompanied by shape deformation.  

Non-glissile interface: the movement of this interface is driven by random jumps of atoms 

across the interface. The movement of this interface can be controlled by volume diffusion or 

by the interface control.       

 Questions addressing the content covered 

1. What types of interface in solids do you know? 

2. How do coherence strains develop? 

3. What is the difference between interphase surface energy of coherent and semicoherent 

interfaces? 

4. What is the definition of incoherence between crystal lattices and of the orientation 

relationship between phases? 

5. Can elastic deformations play a role in incoherent interfaces? Where do they originate 

from? 

6. What is the difference between a glissile and non-glissile interfaces?  

7. Draw the layout of directions 112  in the plane (111) of a FCC crystal lattice. Why the 

slip along all these vectors in equal numbers does not generate shape deformation during FCC 

transformation to HCP? 

8. What is the difference between growth controlled by diffusion and growth controlled by the 

interface?  
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5. Solidification    

  

 
Objective:   Completion of this chapter will enable you: 

 - define difference between homogeneous and heterogeneous nucleation, 

- define potential solidification mechanisms in single-phase alloys,  

- explain the development of chemical heterogeneity during solidification of alloys, 

- characterise dendritic growth in binary alloys, 

- describe the rules of crystallisation of eutectic alloys.  

 

 
EXPLANATION 

Solidification and melting represent transitions between the solid and liquid states. These 

phase transformations are essential for such technological applications as production of 

castings and ingots, continuous casting, growth of monocrystals for semiconductors, fusion 

welding and recently also metallic glasses.  Understanding of the solidification mechanism 

and the impact of parameters such as the temperature gradient, rate of cooling and doping of 

alloys, is important for inspection of mechanical characteristics and structure of cast materials 

and welded joints. 

5.1 Nucleation in Pure Metals 

5.1.1 Homogeneous Nucleation  

In this case, nucleation of the solid phase occurs right inside the melt overcooled  to T below 

the melting point (Tm).  Assume the volume of melt depicted in Fig. 5.1a.  

 

 

 

                                                       a)                               b) 

Fig. 5.1 Homogeneous Nucleation in Melt 

 

 
Study time: 5 hours 

Melt 

  

Solid phase 
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The temperature T = Tm - T generates the Gibbs free energy in this system without any solid 

phase at the level of G1. In case there are any atoms clustering inside the melt to form a small 

spherical solid nucleus (Fig. 5.1b), the Gibbs free energy of this system will change to G2 and 

it will be defined by the formula below: 

                                           
SL
γ

SL
AL

V
G

L
VS

V
G

S
V

2
G                                   (5.1) 

where:  VS, (VL) is the volume of solid (liquid) phase, 

            𝐺𝑉
𝑆 (𝐺𝑉

𝐿) is the Gibbs free energy of solid (liquid) phase per unit of volume,  

                 ASL is the surface area of solid/liquid phase interface, 

                  SL is the surface energy of the solid/liquid phase interface. 

The Gibbs free energy of the system without solid phase is defined as: 

                                                    L
V

G)
L

V
S

V(
1

G                                                  (5.2) 

where VS = 0. 

Development of a solid phase therefore induces a change to the Gibbs free energy: 

                                     
SLSL

A
V

G
S

V
1

G
2

GG                            (5.3) 

Where the Gibbs free energy (per unit of volume) is:  

     
S
V

GL
V

G
V

G                                         

For undercooling T, the value of GV is expressed by the following formula: 

                                                               
mT

T
V

L

V
G


                                                     (5.4) 

where:  LV is the latent heat for solidification per unit of volume.  

Wherever below the temperature Tm, the value of GV remains positive, so the change of 

Gibbs free energy associated with development of a small quantity of the solid phase 

represents a negative contribution in the formula (5.3) but there is also a positive contribution 

associated with formation of the solid/liquid phase interface. Any redundant free energy 

relevant to solid particles in the melt can be minimised upon selection of the correct particle 

shape. Isotropy of surface energy SL induces formation of a spherical particle with the radius r 
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inside the melt and the formula (5.3) expressing the change of Gibbs free energy will be as 

below: 

                                                
SL

2r4
V

G3r
3

4
rG                                       (5.5) 

For graphic depiction of the formula (5.5) refer to Fig. 5.2. The resultant function is 

significant for the maximum point on curve showing Gibbs free energy matching the nucleus 

of critical size  r*. The growth of nuclei sized r < r* would lead towards increase of the Gibbs 

free energy within the system, which is impossible and the nuclei below the critical size will 

be dissolved. That is followed by reduction of the Gibbs free energy of the system. Only a 

growth of nucleus with over-critical size (r > r*) causes reduction of the Gibbs free energy of 

the system, therefore the growth of these nuclei occurs automatically. 

Critical radius of the nucleus r* and the Gibbs free energy required for its formation ∆G* are 

vital parameters of nucleation. Relations enabling the determination of their sizes can be 

derived using a simple mathematical procedure of the formula (5.5) - searching for the 

extreme value of function (dG = 0, when r = r

): 

                                                                  

V
ΔG

SL
γ2

r                                                         (5.6) 

                                                            

 

 

 

 

 

 

 

 

 

Fig. 5.2 Change of Gibbs free energy associated with homogeneous nucleation of sphere with 

radius r           

 

 

Free volume 

energy  r3 

Interfacial energy 

∝ r2 
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


                                                  (5.7) 

Substitution of GV in the equation (5.4) produces:     

                                                 𝑟∗ = (
2𝛾𝑆𝐿𝑇𝑀

𝐿𝑉
) ∙

1

∆𝑇
                                                            (5.8) 

        ∆𝐺∗ = (
16𝜋𝛾𝑆𝐿

3 𝑇𝑀
2

3𝐿𝑉
2 ) ∙

1

(∆𝑇)2
                                               (5.9) 

    Note how values of r* and ∆G* decrease proportionally with undercooling T, Fig. 5.3.      

 

 

Fig. 5.3 Change of shape and position of the curve ∆G depending on the magnitude of 

undercooling T 

The equation (5.6) could be also derived from the Gibbs-Thomson equation, see Chapter 2. 

As the value of r* refers to a radius of a solid sphere, which is in equilibrium with the 

surrounding melt, the free energy of solidified sphere and melt must be the same. The 

equation (2.33) implies that the solid sphere of small radius r will contain the Gibbs free 

energy exceeding the large volume of solid phase by 2γVm/r (per one mole) or 2γ/r (per unit 

of volume). Fig. 5.4 shows that the equality of Gibbs free energy implies an expression 

identical with the equation (5.6): 

                                                          



r

SL
2

V
G                                                (5.10) 

Proper understanding of possibilities for homogeneous development of stable solid nuclei in 

melts requires examination of atomic structure of the liquid phase first. Dilatometry 

∆T1 > ∆T2 > ∆T3 

∆𝐺1
∗ 

∆𝐺2
∗  

∆𝐺3
∗  G 
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measurements have shown that the volume of a liquid phase will be 2-4 % higher compared to 

a solid phase at the melting point temperature. That is why atoms in melt can move more 

freely and take their positions at random. However, the melt can be inspected at any time to 

find numerous small clusters of atoms with their configuration temporarily identical to the one 

in solid phase (crystallisation centres).  

 

Fig. 5.4 Thermal dependency of the volume Gibbs free energy for liquid and solid phases 

The average number of these spherical clusters with the radius of r is defined by the formula:      

                                                               






 


kT
rG

exponrn                                      (5.11) 

where no is the total number of atoms in the system, Gr refers to the excess of Gibbs free 

energy associated with the cluster of atoms (equation 5.5) and k is the Boltzmann constant. 

This relation shall apply for liquids exceeding the temperature Tm with any value of r. Its 

application below Tm shall be limited to r < r*, as the clusters of over-critical size are formed 

by stable nuclei of solid phase and these are no longer parts of the melt. Owing to the fact, 

that nr drops exponentially with respect toGr (which actually rises fast by itself in proportion 

to r), the probability of occurrence of the said cluster will drop very fast with the increase of 

cluster size. Fig. 5.5 represents a schematic depiction of the maximum size of cluster (rmax) 

changing with T. Clusters larger than rmax can obviously form in systems of sufficient extent 

or in case there is enough time, yet the probability of finding clusters exceeding the size rmax  

by at least a slight extent is extremely low. 
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Fig. 5.5 Change of rmax. and r

 with undercooling of T below the melting point 

The Fig. 5.5 also shows the critical size of nucleus r*. It is evident that low undercooling 

makes the critical radius r* so big that the chance to create a stable nucleus will be basically 

eliminated. However, as T rises, r* and G* drop and the undercooling values equal or 

exceeding TN mean fair chance that some clusters reach r* and turn into stable solid 

particles. A small droplet of melt should therefore include a homogeneous nucleation upon its 

undercooling by TN.  Experiments have shown that most metals need to be overcooled by 

TN ~ 0,2 Tm (i.e. ~ 200 K). 

5.1.2 Rate of Homogeneous Nucleation 

Assume the rate, at which solid nuclei appear in a melt overcooled to the particular level. If 

the melt contains C0 of atoms per unit of volume, the number of clusters that have reached the 

critical size (C*) can be obtained from the equation (5.11) as: 
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Adding one more atom to each cluster will produce stable nuclei and if that happens at the 

frequency f0, the rate of homogeneous nucleation will be defined by the formula: 
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where f0 is the function of frequency of atomic vibrations, activation energy of diffusion in 

melt and the surface of critical nucleus.  

The use of (5.9) and subsequent solving of (5.13) can also help to express the following: 
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where the A parameter is defined by the formula:     𝐴 = 
16𝜋𝛾𝑆𝐿

3 𝑇𝑚
2

3𝐿𝑉
2 𝑘𝑇

 

The rate of homogeneous nucleation Nhom is expressed as a function of undercooling T in 

Fig. 5.6. Due to the expression (T)
2
 in the exponent of this equation Nhom will be changing 

basically from zero up to very high values within a very narrow temperature range, i.e. there 

is a truly critical undercooling for nucleation TN. It is the same as TN in Fig. 5.5 but the Fig. 

5.6 is a more clear evidence of the fact that there are basically no clusters forming up to the 

critical undercooling point TN  followed by a very intense nucleation. 

 

Fig. 5.6 The rate of homogeneous nucleation as a function of undercooling T. TN 

represents the critical undercooling for homogeneous nucleation 

The homogeneous nucleation during solidification is very scarce in practice, nucleation 

usually occurs on heterogeneous surfaces only. The points for heterogeneous nucleation are 

usually found on the walls of mould or impurity particles in the melt. 

5.1.3 Heterogeneous Nucleation 

The equation (5.9) implies that easier nucleation at low undercooling levels requires a 

reduction of surface energy in the interface between the solid phase and the melt. Formation 

of nucleus on the mould surface is an easy method to achieve that. Assume formation of a 

nucleus on the mould surface in accordance with Fig. 5.7. Assuming that SL is isotropic, the 

shape of nucleus corresponding with the minimum total surface energy of the system consists 

of a spherical cap. 
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Fig. 5.7 Heterogeneous nucleation of solid phase on a planar wall of the mould 

The prerequisite for equilibrium of surface tension at the mould wall plane can be expressed 

as:   

                                                       cos
SLSMML

                                         (5.13) 

where: ML is the surface energy of interface between the mould (M) and the melt (L),  

            SM is the surface energy of interface between the solid phase (nucleus) and the mould,  

            SL is the surface energy of interface between the solid phase (nucleus) and the melt.    

The contact angle is therefore  equal to: 

                                                          
SL

/)
SMML

(cos                                (5.14) 

The total Gibbs free energy during a heterogeneous nucleation will be defined by the formula:  

                         
MLSM

A
SMSM

A
SLSL

A
V

G
S

V
het

G             (5.15) 

where: VS is the volume of solid nucleus, 

            ASM is the area of interface between the nucleus and the mould, 

            ASL is the area of interface between the nucleus and the melt.         

The equation (5.15) contains three terms relevant to the surface energy now. The first two 

terms are positive and they characterise the contribution of interfaces developed during 

nucleation. However, the third term corresponds with elimination of the interface between the 
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mould and the melt under the nucleus and that is why it is negative, i.e. reducing the total 

nucleation barrier. 

Substitution of values for volume VS and areas A helps altering the equation into the 

following form:  

                                         θS
SL
γ2r4

V
ΔG3πr

3

4
het

ΔG








                             (5.16) 

where: 

                                                        4/
2

cos1cos2S                                      (5.17) 

The equation (5.16) is, except for the term S(), identical to the equation (5.5) describing the 

homogeneous nucleation in melt. The numerical value of expression (5.17) is always lower 

than or equal to 1 depending on the size of the wetting angle . The expression S() is 

therefore marked as the shape factor. 

The Fig. 5.8 shows the course Ghet as well as Ghom for comparison purposes, depending on 

the radius of nucleus. Note that the actual critical radius of nucleus is independent of the 

nucleation type.    

 

  Fig. 5.8 Changes of the Gibbs free energy during homogeneous or heterogeneous nucleation  

 Formulas for calculation of critical values applicable to a heterogeneous nucleation can be 

obtained by derivation of the equation (5.16): 
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The comparison of homogeneous and heterogeneous nucleation has produced the following 

conclusions: 

                                                                 rhet 
 = rhom

                                                       (5.20) 

                                                         ∆𝐺ℎ𝑒𝑡 = 𝑆()∆𝐺ℎ𝑜𝑚
∗

                                             (5.21) 

The critical radius of nucleus r* is not dependent on the nucleation type, Fig. 5.8. Small 

angles of contact are associated with a much lower energetic barrier to formation of 

heterogeneous nucleus compared to the homogeneous nucleation. Heterogeneous nucleation 

is feasible at lower undercooling temperature levels below the solidification point compared 

to the homogeneous nucleation. 

                                                                                                   

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 a) The dependency of G

 on undercooling T for homogeneous and heterogeneous 

nucleation, b) corresponding rates of nucleation assuming the same critical value G
 
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The impact of undercooling to ∆Gℎ𝑒𝑡
∗  and ∆Gℎ𝑜𝑚

∗  has been depicted in the Fig. 5.9. If there are 

n1 atoms in contact with mould walls, the number of nuclei is given by the formula: 
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The heterogeneous nucleation should be possible, if the value ∆Gℎ𝑒𝑡
∗  is low enough. That will 

depend mainly on the value of n1 in the above stated equation. The Fig. 5.9 shows that 

heterogeneous nucleation will be feasible at much lower undercooling levels than those 

required for the homogeneous nucleation. To be more precise, the volume rate of 

heterogeneous nucleation should be described by the following formula:  
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where f1 is the frequency factor similar to f0 in the equation (5.13), c1 is the number of atoms 

touching the potential areas of heterogeneous nucleation per volume unit of melt. 

5.2 Solid Phase Growth in Single-Component System 

There are basically two types of the solid-phase - melt interface: 

a) Uneven (diffusion interface) - typical for metal systems, Fig. 5.10, 

                    b) Smooth (planar) interface -  found mainly in non-metals.  

The differences in atomic structure enable these two types of interface migrate by absolutely 

diverse ways. The diffusion interface migrates by means of continuous growth process, 

whereas the flat interface migrates by means of the lateral growth process using ledges.  

 

Fig. 5.10 Diffuse interface between a solid phase and melt 
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5.2.1 Continuous Growth 

This is typical for metal systems with a diffusion (uneven) interface. The activation barrier 

G
a 

should be approximately similar as that for diffusion in liquid. The driving force for 

solidification G will be therefore defined by the equation: 

                                                                
i

T
mT

L
G                                                    (5.24) 

Where L is latent heat for solidification and Ti is undercooling of the interface below the 

equilibrium solidification point Tm. The rate of solidification should be expressed by the 

following formula:  

                                                                     
i

T
i

kv                                                        (5.25) 

where parameter ki characterizes the interface mobility.   

The theoretical analysis shows the value of ki is so high that normal rate of solidification can 

be achieved with undercooling Ti by a fraction of Kelvin only. The values of Ti can be 

therefore ignored in most cases and there is an assumption that the interface of solid/liquid 

(S/L) occurs at the equilibrium melting point. In other words, the process of metals 

solidification is usually controlled by diffusion. The process of growth of pure metals occurs 

by conducting of heat (diffusion), whereas solidification of alloys is controlled by diffusion of 

the dissolved components. 

This mechanism can be applied to diffuse interfaces with the assumption that atoms may be 

captured at any point located on the solid surface. Such method is defined as the continuous 

growth. This method of growth is adequate, as the interface is disordered and atoms captured 

at random points will not cause any substantial interference with the equilibrium 

configuration of the interface.  

5.2.2 Lateral Growth  

It is worth reminding that materials with high melting entropy create primarily smooth atomic 

interfaces with close-packed configurations. As far as this type of interface is concerned, the 

Gibbs free energy also corresponds with the minimum intrinsic energy, i.e. the minimum 

number of disrupted "solid" bonds. 

If there is any atom of liquid that joins the flat surface (Fig. 5.11a), it is evident that the 

number of disrupted bonds associated with the interface, i.e. the interfacial energy, will 

increase. Therefore, the probability of an atom bonding onto the solid phase is low and the 
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atom will likely jump back inside the melt. If the interface comprises atomic ledges, the atoms 

from melt will be allowed to settle at these ledges with much lower resultant increase of the 

interfacial energy, Fig. 5.11b. 

 

 

 

 

 

 

 

 

 

Fig. 5.11 Smooth atomic interface of solid phase/liquid containing cube-shaped atoms, a) 

adding single atom to the interface surface will increase the number of "disrupted bonds" by 

four, (b) adding an atom to the ledge (L) will merely increase the number of disrupted bonds 

by two, whereas adding an atom to the jog (J) will not initiate any increase in the number of 

disrupted bonds at all. 

If the level contains a jog in a ledge (J), the atoms of liquid can bond onto the solid phase 

without any increase in number of the disrupted bonds and the inter-phase energy remains 

unchanged. That gives rise to the possibility that the remaining atoms join the solid phase at 

these points more likely than for an atom captured on a smooth surface. The smooth S/L 

interface can be expected to move by means of lateral growth of ledges. As the edges and jogs 

represent non-equilibrium states of the interface, their growth will depend on the potential 

methods of their development.  

Surface Nucleation 

As stated above, lonely atoms "captured" on a flat surface will be unstable and they will tend 

to return back into the melt. However, if there is a sufficient quantity of atoms forming a disc-

shaped layer, as shown in the Fig. 5.12, such body can be stabilised and grow further.  The 

problem associated with the disc formation lies in two-dimensional analogy in development 

of atomic cluster by means of homogeneous nucleation. The disc edge contributes with 

b) 

a) 
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positive energy in this case; the energy must be counterbalanced by the volume free energy 

released during the process of disc development. The critical radius r* associated with the 

two-dimensional nucleus will decrease with the increasing undercooling of the interface.  

 

Fig. 5.12 Ledge by Surface Nucleation 

Spiral Growth  

In case the solid phase contains dislocations intersecting the S/L interface, spiral growth of the 

solid phase may occur. Let us assume a simple screw dislocation protruding out of a perfect 

crystal. The resultant form will be a ledge on the crystal surface, as shown in the Fig. 5.13a. 

Anchoring of further atoms from the melt on this ledge will cause its rotation around the cross 

point between dislocation and the surface of solid, Fig. 5.13b.  

 

Fig. 5.13 Spiral growth, (a) ledge linked to the screw dislocation ending at the interface of 

solid/liquid phase. Settling of atoms on the ledge causes its rotation at angular velocity 

decreasing further from the dislocation core and the spiral growth occurs (b). 

The Fig. 5.14 shows the impact of undercooling on the growth rate of various interface types. 
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Fig. 5.14 Impact of the interface undercooling level (Ti) on the growth rate of uneven and 

smooth interface on atomic scale 

5.2.3 Heat Flow and Interface Stability   

Solidification in pure metals is controlled by the rate at which the latent heat of solidification 

can be conducted away from the S/L interface. Heat can be conducted either via solid or 

liquid phase, depending on the temperature gradient within the interface area. Assume an 

example comprising a solid phase growing at the rate ν with a planar interface into a melt 

(Fig. 5.15a). The heat flow via interface through the solid must be in equilibrium with the heat 

flow from melt increased by the latent heat of solidification developed in the S/L interface: 

                                                           V
vL´

L
T

L
K´

S
T

S
K                                          (5.26) 

where: KS,L is the thermal conductivity of solid phase (S) and melt (L),  

            T

S,L is the temperature gradient (dT/dx) in solid phase and melt, 

             ν  is the growth rate of solid phase, 

             LV  is the latent heat for solidification per unit of volume. 

This equation applies generally to a planar interface, even holds in case when heat is 

conducted into liquid (𝑇𝐿
  < 0) (Fig. 5.16a).  

For two potential solidification methods refer to the Figs. 5.15 and 5.16. If the solid phase 

grows into an overheated liquid, the planar inter-phase interface is stable. Let us assume that 

the local increase of the rate of solidification creates a protrusion on the interface (Fig. 5.15c). 

If the projection curvature radius is so large that the Gibbs –Thomson effect can be ignored, 

then the S/L interface remains isothermal at the temperature of approx. Tm.  That is why the 

temperature gradient in melt before the protrusion will be increased, while that in the solid 

will decrease. That will result in more heat conducted into the protrusion of the solid phase 
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and less away, so the rate of growth of protrusion will drop below the growth rate of planar 

areas and the protrusion will diminish progressively. 

    

 Fig. 5.15 Dissolution of Protrusion         Fig. 5.16 Protrusion Growth               

                    a) Heat is extracted through solid;          a) Heat is extracted through melt, 

                       b) Isotherms for planar S/L interface, c) Isotherms for a protrusion.           

However, the situation will be different in case of solid phase growth into an overcooled melt, 

Fig. 5.16. If the solidified interface forms a protrusion, it will result in even deeper 

temperature gradient inside melt in this case. That is why the heat is removed more efficiently 

from the protrusion tip rather than from surrounding regions, which promotes preferential 

growth of the protrusion. The S/L interface advancing into the overcooled melt is therefore 

unstable. 
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Conduction of heat through the solid phase (Fig. 5.15) occurs, when crystallisation occurs on 

walls of the mould that are colder than the melt. However, the heat flow into melt (Fig. 5.16) 

may occur only when the melt has been supercooled below Tm.  Such a situation may take 

place at the beginning of solidification, if nucleation occurs on impurity particles within the 

melt. As there must be a certain undercooling before each nucleation, the first solid particles 

will grow into the overcooled melt and the latent heat of solidification will dissipate into the 

melt. That is why the originally spherical solid particles will develop branches in several 

directions, Fig. 5.17. As the primary branches elongate throughout the growth process, their 

surface becomes unstable and they split to form secondary or even tertiary branches. This 

solidified body is referred to as dendrite ("tree" in Greek language). Dendrites in pure metals 

are usually called thermal dendrites for better differentiation from dendrites in alloys. 

Experiments have proven that the growth of dendrite branches follows certain directions only, 

e.g. along< 100> directions in cubic metals.  

  

Fig. 5.17 Growth of thermal dendrites: a) Spherical nucleus, b) Unstable interface, c) Growth 

along primary dendrite axes, d) Development of secondary and tertiary axes (branches) of 

dendrites 

5.3 Solidification of Binary Alloys 

Solidification of pure metals occurs is a very rare event in practice. Even the commercially 

pure metals contain sufficient amount of impurities that turn the solidification characteristics 
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of pure metals into behaviour of alloys. The following chapters will deal with solidification of 

single-phase binary alloys.  

5.3.1 Solidification of Single-Phase Alloys 

The alloys concerned are of the same type as the one with composition X0 shown in the Fig. 

5.18. This phase diagram has been somewhat simplified, as the solidus and liquidus curves 

are depicted as lines in this case. The partition coefficient is defined as follows:   

                                                                    

L
X

S
X

k                                                         (5.29) 

with XS and XL representing the molar fractions of solute in solid or liquid in equilibrium at 

the given temperature. The partition coefficient in case shown in the Fig. 5.18 is independent 

on temperature. 

Under practical circumstances, the mechanism of solidification of alloys shows complex 

dependency on the temperature gradient, the rate of cooling and the growth rate. 

 

Fig. 5.18 Simplified binary phase diagram, k = XS / XL is constant 

Assume a simple example with the movement of planar S/L interface along a cylindrical bar, 

as shown in the Fig. 5.19a. Such unidirectional solidification can be applied in practice on 

special equipment allowing a one-way heat flow only, along the longitudinal crystallizer axis. 

This chapter will focus on three cases of solidification: 
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a) Infinitely slow (equilibrium) solidification, 

b) Without diffusion in the solid phase with perfect mixing in melt,   

c) Without diffusion in the solid phase and only diffusional mixing in melt.  

5.3.1.1 Equilibrium Solidification 

An alloy with composition X0 shown in Fig. 5.18 starts solidifying at the temperature T1 by 

forming a small amount of solid phase with composition kX0. Decrease in temperature will 

result in increasing quantity of solid phase and, provided the cooling is slow enough and there 

is intense diffusion in the solid phase, the solid and liquid phases will be always homogeneous 

with their composition compliant with curves of both solid and liquid (Fig. 5.19b). Relative 

amounts of solid and liquid phase at any temperature can be simply determined using the 

lever rule. Please note that when maintaining the one-dimensional solidification as assumed, 

preserving of the initial content of solute in the alloy requires that the two hatched areas in 

Fig. 5.19b are of the same size (differences in molar volumes between both phases will be 

ignored). Once the temperature T3 has been reached, the composition of last remainder of the 

alloy will be X0/k and the composition of solidified bar will be X0 throughout its entire length. 

 

Fig. 5.19 Rectified solidification of an alloy with composition Xo in Fig. 5.18, a) planar 

interface of solid/liquid and one-way heat flow, b) corresponding profiles of composition at 

the temperature T2 in case of full equilibrium. 

5.3.1.2 No Diffusion in Solid Phase, Perfect Mixing in Melt 

Cooling will be often very fast under practical circumstances to allow diffusion in the solid 

phase. Assume that the solid phase will not allow any diffusion processes, yet the chemical 

homogeneity of melt will be maintained by efficient stirring during the solidification stage. 

There is also the rule that unidirectional solidification will develop the first solid, when the 

cooled end of bar reaches the temperature T1, at which the composition of solid phase will be 

Heat Solid phase Melt 
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equal to kX0, Fig. 5.20a. As kX0 < X0, this first portion of solid will be purer than the melt 

from which it forms. Dissolved solute is forced into the melt, where its concentration rises 

above X0, Fig. 5.20b. To resume the solidification process, the interface temperature must 

drop below T1. Another layer of the solid phase will then contain slightly more of the 

dissolved component compared to the first layer. As the solidification process progresses, the 

melt will be successively enriched with the solute as the temperature of solidification is 

gradually decreasing, Fig. 5.20c. 

 

 

Fig. 5.20 The planar solidification front for alloy with composition X0 shown in Fig. 5.18 with 

no diffusion in solid phase and with perfect mixing in melt, a) as in Fig. 5.18 but including the 
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average composition (dashed line) of the solid phase, b) composition profile close to the 

temperature T1, c) composition profile at temperature T2 (compare it with the profile and 

fraction solidified in Fig. 5.19b), d) composition profile at eutectic temperature.  

At any moment the solidification process can be characterized by local equilibrium at the 

S/L interface, i.e. the composition of solid and liquid phase in mutual contact will correspond 

with the equilibrium phase diagram at the particular temperature. However, as there is no 

diffusion in solid phase, individual layers of the solid phase along the bar length keep their 

original compositions. The average chemical composition of solid phase (X̄S) is always lower 

than the composition of S/L interface, as shown by the dashed line in Fig. 5.20a. The relative 

amount of solid and liquid phases for the particular temperature of interface is therefore 

determined by the lever rule using X̄S and XL. That implies the melt may be much richer in 

dissolved component than the X0/k and it may even achieve the eutectic composition XE. The 

solidification process will therefore complete close to the temperature level TE by forming the 

eutectic α + β. To determine the ratio and composition of solid phase, this non-equilibrium 

model of solidification uses the non-equilibrium lever rule, the so called Scheil equation.  

5.3.1.3 No Diffusion in Solid Phase, No Mixing in Melt 

If the liquid phase does not involve any mixing or convection, the solute component rejected 

during the development of solid phase will be transported into the melt by diffusion only. This 

is the reason why there will be a prompt increase of solute ahead of the solid and the 

corresponding rapid enrichment of the solid formed, Fig. 5.21a. This stage of solidification is 

defined as the initial transition. In case the solidification process occurs at a constant rate v, it 

can be proven that once the interface temperature has reached the value T3 in Fig. 5.18, 

solidification will run in the steady state. The composition of melt adjacent to the solid phase 

at this stage will equal to X0/k and the composition of solid phase will correspond with the 

average composition of alloy X0.  

The composition profile of melt in the steady state must be in such configuration that the rate 

of diffusion of dissolved component along the concentration gradient away from the interface 

is balanced by the rate of rejection of solute from the solidifying  melt: 

                                                      -D𝐶𝐿
′  = v (CL - CS)                                                    (5.31)     

where: D is the coefficient of diffusion in melt, 𝐶𝐿
′  corresponds with the concentration 

gradient dCL/dx at the interface, CL and CS refer to concentration of dissolved component in 

solid and liquid phases in case of equilibrium at the interface. The characteristic width of 
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concentration profile is D/v, Fig. 5.21b. When in the final stage, concentration of the 

dissolved component in melt grows rapidly and the solidification process ends by formation 

of a low fraction of eutectic.     

Under practical circumstances, solidifying alloys will exhibit partial signs of all three models 

discussed above. There will be generally some mixing either due to turbulence in melt caused 

by casting, by the effect of convection currents or gravity. Concentration profiles established 

under practical circumstances may show characteristics shown between profiles in Fig. 5.20d 

and Fig. 5.21c. There are also numerous cases, where diffusion in the solid phase must be 

considered, e.g. interstitial atoms or BCC metals.  In this case the solute may diffuse from the 

solidifying interface back into the solid as well as into the melt, which results in improved 

homogeneity after solidification.  

 

Fig. 5.21 Planar solidification front of alloy with composition X0 in Fig. 5.18 considering no 

diffusion in solid phase and no mixing in melt, a) composition profile in case the temperature 

of S/L interface lies between T2 and T3 in Fig. 5.18, b) steady solidification at the temperature 
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T3, the solid phase composition is equal to the composition of melt away from the S/L 

interface (X0), c) the composition profile at the temperature TE (final transition). 

Unidirectional solidification finds its commercial use in production of heat resistant alloys, for 

example, those are utilised in manufacturing of blades for gas turbines. It is also used in 

manufacturing of very pure metals (zone refining). 

5.3.2 Cellular and Dendritic Solidification 

The examples examined so far have dealt with solidification processes, when the growth front 

is planar. Nevertheless, the diffusion of solutes into the melt during alloy solidification is 

analogical to convection of latent heat into the melt during solidification of pure metal. The 

first impression then is that the planar front should break up to form dendrites. This problem 

is complicated further by potential occurrence of gradients in the melt. 

Assume a steady-state solidification with planar interface, as shown in the Fig. 5.22a. The 

consequences of changing concentration of solute in melt ahead the solidification front are 

represented by corresponding changes to the equilibrium solidification temperature, i.e. the 

temperature of liquid shown in the Fig. 5.22b as the line Te. Besides the interface temperature 

determined by the local equilibrium, the actual melt temperature may correspond to any line, 

e.g. the line TL.  The values applicable to the interface are TL = Te = T3, Fig. 5.18. In case the 

temperature gradient is lower than the critical value shown in Fig. 5.22b, the melt before the 

solidification front will exist even below its equilibrium  solidification temperature, i.e. it is 

supercooled. As undercooling develops due to composition (constitution), it is defined as the 

constitutional undercooling. 

The precondition necessary for development of stable protrusions on the planar interface is 

their existence in the area of constitutional undercooling in melt.  Provided the value of TL in 

Fig. 5.22b changes, the temperature on tip of each protrusion will exceed that of the 

surrounding interface. However, if any protrusion tip remains below the local liquid 

temperature (Te) of concentrated melt, there is still a chance for further solidification and the 

protrusion can grow. On the other hand, if the temperature gradient before interface is steeper 

than the critical gradient shown in Fig. 5.22b, the protrusion will be exceeding the local liquid 

temperature and it will therefore melt back. 
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Fig. 5.22 Constitutional supercooling ahead the planar solidification front, a) The 

composition profile before the S/L interface in steady state of solidification. The dashed line 

shows dXL/dx in the S/L interface, b) The temperature of melt ahead the solidification front 

corresponds with the line TL. The equilibrium temperature of liquid for the melt near the S/L 

interface is characterized by the curve Te. The constitutional undercooling develops, when the 

line TL lies below the critical gradient.  

Provided the growth state is steady, the critical gradient shown in Fig. 5.22b will be 

determined by the formula (T1 – T3)/ (D/v), where T1 and T3 refer to the temperature of liquid 

and solid for alloy with composition  X0 (Fig. 5.18).  The precondition for stable planar 

interface is defined as: 

                                                            
)v/D(

)
3

T
1

T(
´
L

T


                                                           (5.32) 

where TL´ refers to the temperature gradient (dTL/dx) at the S/L interface and D/v is the 

characteristic width of concentration profile. Rearrangement of the experimentally adjustable 

parameters TL´ and v determines the precondition for absence of constitutional undercooling 

as follows: 

                                                       TL´/v > (T1 – T3)/D                                               (5.33) 
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where (T1 - T3) characterises the solidification equilibrium interval of the alloy. 

It is evident that the planar solidification front is very hard to reach in alloys with great 

solidification interval and at high solidification rates. Except for well controllable 

experimental conditions, alloys would seldom solidify with the planar S/L interface. 

Temperature gradients and growth rates cannot be controlled independently under normal 

conditions; those are determined by the rate of heat conduction out of the solidifying alloy. 

 

Fig. 5.23 Breakdown of initially planar solidification front to cells 

In case the temperature gradient before an initially planar interface passes through a gradual 

decrease below the critical value, the first stage of breakdown of such interface is the 

development of cellular structure, Fig. 5.23. The development of the first protrusion forces the 

solute in the transverse direction to accumulate at the root of protrusion, Fig. 5.23b. That 

reduces the equilibrium solidification temperature and causes occurrence of recesses at the 

interface (Fig. 5.23c) that induce development of further protrusions (Fig. 5.23d). Protrusions 

finally develop into long branches or cells that grow in parallel with the heat flow direction, 

Fig. 5.23e. The dissolved component forced out of the solidifying melt concentrates between 

walls of cells forming eutectic at the lowest temperature. However, tips of those cells grow 

into the hottest melt and that is why these contain the least solute. Actually, when Xo  Xmax 

(see Fig. 5.18) the melt between cells may achieve the eutectic composition and therefore the 

intercellular spaces will contain eutectic. Mutual relations between the temperature gradient, 

the shape of cell and segregation of the dissolved component are shown in Fig. 5.24. 

Heat flow 
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Fig. 5.24 Distribution of temperature and solute during cellular solidification. Please note 

that the dissolved component concentrates in the melt between cells, the composition across 

cells shows the concentration profile ("coring"), eutectic forms in between cells. 

As far as the cellular structure is concerned, individual cells are oriented in the same direction 

and they all form a single as-cast grain. Cellular microstructures are stable within a particular 

interval of the temperature gradient only. When the temperature gradient is low enough, walls 

of cells or primary branches of the solid phase show a development of secondary branches 

and even lower temperature gradient will induce creation of the tertiary branches, i.e. 

formation of dendrites. The morphological change will be also followed by a change in 

direction of the main branches out of the heat flow direction to the preferential 

crystallographic orientation, e.g. 100 in cubic metals. The reasons for conversion of cells 

into dendrites are still not very clear. This is probably relevant to occurrence of constitutional 

undercooling in the melt between cells, which causes transverse instability of the interface. 

For morphology of dendrites created during solidification of a transparent organic compound 

refer to the Fig. 5.25. 
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The general rule implies that the tendency towards development of dendrites rises with the 

increase of equilibrium solidification interval. That is the reason why effectiveness of 

different solutes can vary widely. As far as systems with a very low partition coefficient (k) 

are concerned, the cellular or dendritic growth may be associated with a very little additive of 

a solute. 

 

Fig. 5.25 Columnar dendrites in a transparent organic compound. Please note the low 

thickness of secondary branches at the point of contact with primary dendritic branches. 

Finally, it is worth mentioning that even though the discussion on solidification of alloys is 

focused on systems, where k < 1, similar arguments can be exercised also in those cases, 

when k > 1.  

5.3.3 Eutectic Solidification 

Solidification of a binary eutectic alloy produces two cooperative solid phases, i.e.  L → α + 

β. Different alloys exhibit different types of eutectic solidification, those are usually defined 

as normal or anomalous. Normal structures will feature both phases either as alternating 

lamellae or as small bars of minor phase embedded in the other phase. The growth of both 

phases during solidification is simultaneous, while the S/L interface is basically planar. 

Normal structures develop, when both phases have low entropy of formation. On the other 

hand, anomalous structures occur in systems, where one of the solid phases possesses the high 

entropy of melting. There are many versions of such degenerated structures, where the most 

commercially important ones can be found in Al - Si alloys. This didactic text will deal with 

normal structures featuring lamellar morphology only. 
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Figure 5.26 shows how two phases can grow in cooperative manner at a basically planar 

solidification front. Development of phase α rich in component A is followed by diffusion of 

excessive atoms of component B along the S/Linterface over a short distance, where they will 

be integrated into phase β (rich in component B). 

 

Fig. 5.26 Interdiffusion in melt ahead of eutectic front 

Similarly, atoms of the component A forced out of the phase β diffuse towards the ends of 

adjacent α lamellae. The rate of eutectic growth will depend on the rate of diffusion processes, 

which will depend on the interlamellar spacing λ. Short interlamellar spacing should result in 

faster growth. 

 

Fig. 5.27 Illustration of the Gibbs free energy at the undercooling To below the eutectic 

temperature for two limit cases of interlamellar spacing:  =  and  =   

Nevertheless, there is also the bottom threshold for interlamellar spacing , which is 

determined by the total interfacial energy required to form the / interface. The interlamellar 

spacing  determines the total area of / interface: in the unit volume of eutectic it is equal 

to 2/ (m
-2

). The change of Gibbs free energy relevant to solidification of 1 mole of the melt 

is expressed by the formula: 
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                                              ∆𝐺() =  −∆𝐺(∞) + 
2𝛾𝛼𝛽𝑉𝑚


                                        (5.34) 

where Vm is the molar volume of the eutectic and G(∞) is the drop of free energy for very 

large values . Solidification will not take place, if ∆𝐺() is positive and therefore G (∞) 

must ensure full compensation of the interfacial energy, i.e. the eutectic/melt interface must 

be undercooled below the equilibrium eutectic temperature TE, Fig. 5.27. If the total 

undercooling is To, then G(∞) is approximated by the formula: 

                                                        ∆𝐺(∞) =  
∆𝐻 ∆𝑇𝑜

𝑇𝐸
                                                      (5.35) 

where H is the enthalpy. The minimum possible interlamellar spacing 

 corresponds with 

the condition G (

) = 0, Fig. 5.27: 

                                                   = 
2𝛾𝛼𝛽𝑉𝑚𝑇𝐸

∆𝐻∆𝑇𝑜
                                                         (5.36) 

Presence of such interlamellar spacing in eutectic will result in situation, where the Gibbs free 

energy liquid and eutectic are the same, i.e. all three phases are in equilibrium. That is due to 

the fact that the / interface raises the levels of Gibbs free energy  and  phases from 

values G

(∞) and G


(∞) to the values of G


(

) and G

(

), see Fig. 5.27. The cause of this 

increase lies in curvature of the interfaces /L and /L arising from the need for balancing of 

the interfacial tensions at the triple point //L, Fig. 5.26. The increase will be generally 

different for either phase but for simple cases it can be shown that  
2𝛾𝛼𝛽𝑉𝑚


 applies for both 

phases, Fig. 5.27. 

5.4 Crystallisation Example - Ingot  

Production of heavy forgings makes use of cast semi-products called ingots. Those are 

products created by solidification of liquid metal in metal moulds.  Heavy forgings are made 

of ingots at the weight of several hundreds of tonnes. Ingots solidify very slowly and they can 

obviously develop various defects to impair their further processing ability. This chapter 

focuses on evolution of structure during solidification of ingots only.  

Solidified ingots involve three basic zones, Fig. 5.28: 

- External, fine-grained, undercooled layers of equiaxed crystals, 

- Columnar crystal bands, 

- Centre zone of equiaxed crystals. 
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Once the liquid metal comes into contact with walls of the mould, the melt will cool down 

below the temperature of liquid rapidly. The mechanism of heterogeneous nucleation will 

form a large number of fast growing nuclei. Different orientations of individual crystals cause 

their mutual crashing and the growth will stop fast, which results in formation of a fine-

grained external zone of ingot, Fig. 5.29. 

 

                                         Fig. 5.28 Cross section of an ingot  

Crystals with their primary axes approximately parallel with the direction of heat flow will be 

the fastest-growing ones and they will form columnar crystals, i.e. dendrites. Preferred growth 

of crystals along the crystallographic directions of type 100 occurs in cubic metals. A large 

number of dendrites forms with parallel primary axes. Fig. 5.30 illustrates an optional 

multiplication mechanism for primary branches of dendrites during the solidification process.  

 

Fig. 5.29 Competitive growth of crystals right after pouring, dendrites with primary branches 

perpendicular to the mould walls grow faster than less conveniently oriented crystals the 

growth of which ceases rapidly.   
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The volume fraction of solidified melt increases with the rise of spacing behind dendrite tips. 

The area between dendrite tips and the last portions of the melt is called the "mushy" zone. 

The length of this zone depends on the temperature gradient and the equilibrium solidification 

interval of alloy. The spacing of primary and secondary dendrites often increases with the rise 

of distance from the mould wall. That relates to the drop in cooling rate during solidification 

of ingots.     

The equiaxed zone at the central section of ingots comprises equiaxed grains with random 

orientation. Remelted ends of dendrite branches are considered an important source of these 

crystals. The temperature around the newly developed dendrites will increase, which may 

result in melting of certain portions of the dendrites, especially at contact points between the 

primary and secondary branches, see Fig. 5.25. Such released parts of dendrites may serve as 

nuclei of new crystals. Turbulent flows caused due to differences in temperature or 

concentration in the remaining melt volume represent an effective source of temperature 

differences within a solidifying ingot.  Convection flows can transport dendrite fragments into 

the liquid area, where they can grow into equiaxed crystals.  

 

Fig. 5.30 Columnar crystals are formed by conveniently oriented dendrites. Each columnar 

crystal starts from separate points of heterogeneous nucleation but it may contain a range of 

primary dendrite branches.  

Most metals shrink during the solidification process. Alloys with narrow solidification 

intervals have narrow mushy zones and as the zone of solidified metal grows in thickness, the 

quantity of liquid metal decreases continuously with a deep shrinkage cavity at the centre of 

cross section of the solidified ingot. In alloys with wider solidification intervals, shrinkage 

cavity close to the ingot top is created.   
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The occurrence of chemical heterogeneity is a very important consequence of segregation 

processes during solidification of steel ingots; it is expressed by formation of macro-

segregation bands as well as micro-segregation areas. Further details of these issues can be 

also found in 1.  

 Summary of terms in this chapter  

Homogeneous nucleation: nucleation of a solid phase occurs within a homogeneous melt. It 

is very rare under practical circumstances. 

Heterogeneous nucleation: nucleation of a solid phase occurs on foreign surfaces, e.g. the 

mould walls. Heterogeneous nucleation may occur after a very slight undercooling only. 

Rate of nucleation: the number of stable nuclei formed within a unit of volume over a unit of 

time. 

Dendrite: preferential growth of crystals during crystallisation results in formation of 

columnar crystals. These may form in pure metals as well as in alloys. 

Constitutional undercooling: the dendritic growth in binary alloys is subject to the 

condition, when the temperature gradient in melt lies below the equilibrium liquid 

temperature of the solute enriched melt ahead the liquid/solid interface. 

Critical nucleus: the drop of free chemical energy relevant to the formation of critical 

nucleus is equal to the interfacial energy necessary for the development of nucleus/matrix 

interface. A jump of an atom from the melt to the surface of critical nucleus is associated with 

the drop of its total Gibbs free energy enabling its further growth.  

Local equilibrium: chemical composition of solid phase and melt at an interface moving in 

the course of crystallisation process at a particular temperature corresponds with values of the 

solid and liquid in the equilibrium phase diagram. 

 Questions addressing the content covered 

1. What is the latent heat of solidification? 

2. What is the difference between homogeneous and heterogeneous nucleation? 

3. What is a thermal dendrite? 

4. What is the constitutional undercooling? 

5. What mechanisms of binary alloy solidification do you know? 

6. What is the definition of the partition coefficient? 
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7. What limits the minimum interlamellar spacing in eutectic? 

8. How does the chemical heterogeneity develop during solidification of alloys? 

9. Explain the helical growth of crystals.  

10. What is an ingot mould? 

 
Exercises 

Exercise 1 

Use the formulas below to estimate the number of clusters of atoms within 1 mm
3
 of copper at its 

melting point for spherical clusters contains: a) 10 atoms, b) 60 atoms. What amount of liquid copper 

is probably contained in a single cluster formed by 100 atoms? The atomic volume of copper is   = 

1.6 x 10
-29

 m
3
, SL=0.177 Jm

-2
, k=1.38 x 10

-23 
JK

-1
, Tm=1,356 K. 

                                  
SL

r
V
GrrG 

2
4

3

3

4
                     (A) 

        






 

kT

rG
onrn exp              

Solution:  

At the equilibrium melting point GV = 0, the equation (A) is: 

SL
r

m
TTrG 

2
4)(   

The cluster comprising nc atoms with the atomic volume  is defined by: 

4𝜋𝑟3

3
=  𝑛𝑐 

Alteration of term for Gr: 

∆𝐺𝑟 = 4𝜋 (
3𝑛𝑐

4𝜋
)

2
3⁄

𝑆𝐿  

Substitution of values   a SL : 

∆𝐺𝑟 = (5,435 𝑥 10−20)𝑛𝑐
2

3⁄  

For 1 mm
3
, no = 6.25 x 10

19
 atoms 

for nc = 10 atoms, nc = 9 x 10
13 

of clusters per 1 mm
3 

for nc = 60 atoms, nr = 3 clusters per 1 mm
3
  

for nc = 100 atoms, nr = 4 x 10
-8

 clusters per 1 mm
3
 and this can be used to calculate the following: 

                        1 cluster is in the volume of 2.5 x 10
7
 mm

3
. 
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Exercise 2 

Calculate the rate of homogeneous nucleation in liquid copper for undercooling levels of 180, 200 and 

220 K.  
























2

)(

exp
00hom

T

A
cfN   ;   𝐴 = 

16𝜋𝛾𝑆𝐿
3 𝑇𝑚

2

3𝐿𝑉
2 𝑘𝑇

 

Data:  

L = 1.88 x 10
9
 Jm

-3
, Tm = 1,356 K, SL = 0.177 Jm

-2
, fo = 10

11
 s

-1
, co = 6 x 10

28
 atoms m

-3
, 

k = 1.38 x 10
-23

 JK
-1 

 

Solution:  

The values given imply: 

T (K) Nhom (m
-3

s
-1

) Nhom  (cm
-3

s
-1

) 

180 0.7 7 x 10
-7 

200 8 x 10
6 

8 

220 1 x 10
12 

1 x 10
6 

 

The results show the scope of changes to rate of homogeneous nucleation occurring within a relatively narrow 

range of temperature. 
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6. Diffusional Transformations 

 

 
Objective:   Completion of this chapter will enable you: 

 - define basic types of diffusional transformations, 

- describe the precipitation from an oversaturated solid solution, 

- characterise the individual stages of precipitation, 

- explain the term "precipitation sequence", 

- describe the kinetics of diffusional transformations, 

- identify products of massive transformation and discontinuous precipitation. 

 

 
EXPLANATION 

Most phase transformations in solid state occur pursuant to thermally activated movement of 

atoms, i.e. the diffusion mechanisms. The basic types of diffusional phase transformations can 

be classified as follows: 

  - Precipitation reactions, 

  - Eutectoid transformations, 

  - Reactions of atom ordering,  

  - Massive transformations, 

  - Allotropic transformations. 

Precipitation reactions may be characterised by the following formula: 

                                                         ´   +                                                      (6.1) 

where ´ is a metastable oversaturated solid solution,  is a stable or metastable precipitate 

and  is a solid compound with its crystal structure identical to the ´ phase, but its chemical 

composition is closer to the equilibrium state. The precipitation process can be divided into 

three stages: nucleation, growth and coarsening of precipitate. 

 Eutectoid transformations represent a replacement of metastable phases () with a more 

stable mixture of two other phases (+): 

 

 
Study time: 6 hours 
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                                                                     +                                                         (6.2) 

Precipitation and eutectoid transformations include the formation of phases with different 

compositions and that is why these must involve long-range diffusion.  The remaining 

reactions may run without any composition changes or long-distance diffusions. Ordering 

reactions may be expressed as follows:  

                                             (disordered)  ´(ordered)                              (6.3) 

Massive transformation deals with breakdown of the original phase to form one or more 

phases with the chemical constitution matching the master phase, yet these phases differ in 

terms of crystal structures: 

                                                                                                                                  (6.4) 

Allotropic transformations occur in single-component systems with various crystal structures 

within certain temperature ranges. 

6.1 Precipitation 

6.1.1 Homogeneous Nucleation 

In the course of precipitation from an  oversaturated solid solution, atoms of the component 

B must diffuse and form small quantities matching the composition of phase ; and if needed, 

these atoms must be re-arranged into a crystal structure of  phase. This process must result in 

the formation of the / interface and this leads to the activation energy barrier. 

The change of Gibbs free energy associated with this process involves three contributions: 

1. At the temperature where the  phase is stable, formation of the  phase in volume V 

causes a drop of the volume free energy by VGV. 

2. Assuming the / inter-phase energy  is isotropic, formation of the interface with the area 

A will result in an increase of the free energy by A. 

3. Generally, the transformed volume will differ from the initial volume occupied by the 

matrix and that situation will result in development of deformation energy of misfit GS per 

unit volume of  phase. 

The total change of free energy during homogeneous nucleation in solid solution is: 

                                                 ∆𝐺 =  −𝑉∆𝐺𝑉 +  𝐴 + 𝑉𝐺𝑆                                     (6.5)  
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As for nucleation in solids, the value of surface energy may undergo significant modifications 

from very low values, for coherent interfaces up to very high values for incoherent interfaces.  

That is why the term A should be replaced with summation over individual surfaces of the 

nucleus iAi. 

If the changes to surface energy associated with interface characteristics are ignored and 

assuming the development of a spherical nucleus with the radius r, the equation (6.5) will be 

in form of:   

                                                               ∆𝐺 =  −
4

3
𝜋𝑟3(∆𝐺𝑉 − ∆𝐺𝑆) +  4𝜋𝑟2𝛾                                 (6.6) 

Graphic dependence G versus r is illustrated in the Fig. 6.1. The first derivation of equation 

(6.6) can be used to obtain terms for critical radius of the nucleus and the critical nucleation 

barrier: 

                                                        𝑟∗ =  
2𝛾

(∆𝐺𝑉−∆𝐺𝑆 )
                                                          (6.7) 

                                                       ∆𝐺∗ =
16𝜋𝛾3

3(∆𝐺𝑉 −∆𝐺𝑆)2
                                                     (6.8)             

 

Fig. 6.1 Change of G with the radius r for a homogeneous nucleus, G

 - activation barrier 

of nucleation 

If an alloy with constitution Xo is subject to solution annealing at the temperature T1 and 

subsequently cooled down to the temperature T2, the  solid solution will be oversaturated  

with the component B, Fig. 6.2. The oversaturation may be gradually eliminated by means of 
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precipitation of particles of the  phase. Once the transformation has been completed, the 

Gibbs free energy of alloy will drop by Go per 1 mole. Go is therefore the total driving 

force of transformation, i.e. decomposition of the oversaturated solid solution. Nevertheless, 

this is not a driving force of nucleation.  The first nuclei that appear will have no significant 

impact towards changes of the constitution of solid compound   from its value Xo. The 

Gibbs free energy released upon formation of 1 mole of nuclei may be determined as follows: 

if the phase  is deprived of a small amount of material comprising the composition of 

nucleus of  phase (𝑋𝐵

), the total Gibbs free energy of the system will be reduced by G1: 

                     𝐺1 =  𝜇𝐴
𝛼𝑋𝐴

𝛽
+ 𝜇𝐵

𝛼𝑋𝐵
𝛽

    (per 1 mole of  phase  removed)                      (6.9) 

 

Fig. 6.2 Changes of the free energy during precipitation, a) development of an oversaturated 

solid solution in the alloy with constitution Xo, b) driving force for nucleation of the first 

precipitate is Gn=GVVm. The total decrease of free energy at the end of precipitation and 

achievement of equilibrium is Go.  



Phase Transformations 
__________________________________________________________________________________ 

81 
 

That is implied by the definition of chemical potential. The value G1 is shown in Fig. 6.2 as 

the point P. If the atoms inside nucleus are further re-arranged into the crystal structure of   

phase, the total free energy of the system will increase by the value of G2: 

                        ∆𝐺2 =  𝜇𝐴
𝛽

𝑋𝐴
𝛽

+ 𝜇𝐵
𝛽

𝑋𝐵
𝛽

   (per 1 mole of  phase  developed)                (6.10) 

The value of G2 is shown in the Fig. 6.2 as the point Q. Therefore, the driving force for 

nucleation is defined as follows: 

                                ∆𝐺𝑛 =  ∆𝐺2 − ∆𝐺1   (per 1 mole of  phase)                                (6.11) 

That matches the vector PQ. The drop of Gibbs free volume energy associated with nucleation 

of the  phase can be expressed as follows: 

                                  ∆𝐺𝑉 =
∆𝐺𝑛

𝑉𝑚
   (per unit of volume of the  phase)                           (6.12) 

where Vm is the molar volume of the  phase. The approximate rule for diluted solutions is: 

                                      ∆𝐺𝑉 ∝  ∆𝑋 where ∆𝑋 =  𝑋𝑜 − 𝑋𝑒                                       (6.13) 

It is evident that the driving force for precipitation increases with the increasing of  

undercooling T below the temperature of equilibrium solubility.  

Concentration of nuclei of critical size C

 is determined by the formula: 

                                                   𝐶∗ = 𝐶𝑜exp (−∆𝐺∗

𝑘𝑇⁄ )                                                   (6.14) 

where Co is the number of atoms per unit of volume of the phase. If each nucleus can become 

supercritical with frequency f, the rate of homogeneous nucleation will then be given as: 

                                                                       𝑁ℎ𝑜𝑚 = 𝑓𝐶∗                                             (6.15) 

where the frequency factor f depends on the frequency shown by critical nucleus in obtaining 

an atom from the surrounding   matrix. That will depend on surface area of the nucleus and 

the rate of diffusion. If the energy for activation of atomic migration is given by Gm per 

atom, the factor f can then be expressed using the formula exp-Gm/kT), where  is the 

factor including the vibration frequency of atoms as well as the surface area of the critical 

nucleus. The formula to determine the rate of homogeneous nucleation is then: 

                                     𝑁ℎ𝑜𝑚 = 𝜔𝐶𝑜 exp(−
∆𝐺𝑚

𝑘𝑇
) exp(−

∆𝐺∗

𝑘𝑇
)                                   (6.16) 
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To express this equation as a function of temperature, one shall assume that  and Gm are 

constant but G
 
is strongly dependent on temperature. The main factor controlling the G

 
 is 

the driving force for precipitation GV. As the composition varies, the value GV must be 

obtained from the diagram showing dependency between the Gibbs free energy and the 

composition.  

The change of GV depending on temperature applicable to an alloy with composition Xo has 

been illustrated by the diagram in Fig. 6.3b. Bearing in mind the element of misfit strain 

energy GS, the effective driving force will be determined by the difference (GV - GS) and 

the effective equilibrium temperature is reduced to the value of 𝑇𝑒
´, Fig. 6.3a. If the value of 

(GV - GS) is known, the activation energy G

 can be calculated. The Fig. 6.3c shows two 

exponential terms for rate of homogeneous nucleation. The second term (exp(−
∆𝐺∗

𝑘𝑇
)) is 

basically an expression of potential concentration of nuclei of critical size, it is virtually zero 

until reaching the critical undercooling value of TC and then it grows rapidly. The first 

exponential term (exp(−
∆𝐺𝑚

𝑘𝑇
)) characterises the mobility of atoms. As the value of Gm is 

constant, this term experiences a rapid drop with decrease of temperature.  

 

Fig. 6.3 Changes to the rate of homogeneous nucleation in an alloy with constitution Xo, a) 

phase diagram, b) effective driving power (GV - GS) and the resultant energetic barrier 

N 
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G

, c) two exponential terms to determine the resultant rate of nucleation illustrated in the 

Fig. 6.3d. 

These two exponential terms determine the rate of homogeneous nucleation, Fig. 6.3d. The 

rate of nucleation will be negligible for undercooling below  TC, as the driving power GV is 

too low, whereas large undercooling is matched by low rate of nucleation owing to the too 

slow diffusion. The maximum rate of nucleation is achieved at medium levels of 

undercooling. Systems with a lower concentration of solute reach the undercooling level at 

lower temperature with slower diffusion. The rate of nucleation in such alloy will be always 

lower than in an alloy with higher concentration of the solute, Fig. 6.4. This issue of 

nucleation was handled with assumption that the rate of nucleation is constant. However, in 

practice the rate of nucleation at the beginning of transformation is rising gradually and later it 

drops, as the growth of nuclei developed at the initial stage of nucleation works towards 

progressive reduction of the supersaturation of  solid solution. The equation for G

 implies 

the most effective method for minimising the energetic barrier is to form nuclei within the 

minimum total interfacial energy. Incoherent interfaces reach the  value so high that it makes 

any homogeneous nucleation basically impossible. If there is an orientation relationship 

between the nucleus and matrix and if the interphase interface is incoherent, then the value of 

G

 will be reduced significantly and homogeneous nucleation will be enabled. An example 

of homogeneous nucleation may include precipitation of particles of Ni3Al (phase ) in nickel 

superalloys.  

 

Fig. 6.4 Impact of alloy composition on the rate of nucleation. The rate of nucleation in alloy 

No. 2 will be always lower than in the alloy No. 1 - read the text for explanation. 
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6.1.2 Heterogeneous Nucleation  

Nucleation in solids mostly takes place by means of a heterogeneous mechanism. Suitable 

nucleation points may be identified as non-equilibrium defects, e.g. dislocations, grain 

interfaces, stacking faults, inclusion particles, free surfaces etc. All these defects increase the 

free energy of material. In case the development of nucleus induces destruction of the defect; 

there will be a certain amount of energy released (Gd) which causes a drop of the energy 

nucleation barrier: 

                                ∆𝐺ℎ𝑒𝑡 =  −𝑉(∆𝐺𝑉 −  ∆𝐺𝑆) +  𝐴𝛾 − ∆𝐺𝑑                                (6.17) 

 One of the most common cases of nucleation is the development of nuclei at grain 

boundaries. If the missfit strain energy is neglected, the optimal shape of nucleus will be the 

one minimising the total interfacial free energy. In case of incoherent grain boundary the 

optimal shape of nucleus will be in form of a lens, see Fig. 6.5. The value of the contact angle  

 may be expressed as follows, assuming that the value  is isotropic and the same for both 

grains: 

                                                      cos 𝜃 =  
𝛾𝛼𝛼

2𝛾𝛼𝛽
⁄                                                     (6.18) 

The free energy of nucleus can be expressed as follows: 

                                       ∆𝐺 =  −𝑉∆𝐺𝑉 + 𝐴𝛼𝛽𝛾𝛼𝛽 − 𝐴𝛼𝛼𝛾𝛼𝛼                                  (6.19) 

where V is the volume of nucleus, A is the area of / interface with the surface energy , 

and A
 
is the initial surface area of the grain boundary with the energy of  eliminated 

during the nucleation process. The last term in this equation is identical for the term ∆𝐺𝑑 
 
in 

the formula (6.17). 

 

                       Fig. 6.5 Critical size and shape of nucleus at the grain interface 

Critical radius of lenticular nucleus at the grain boundary can be expressed by the formula: 

                                                            𝑟∗ =  
2𝛾𝛼𝛽

∆𝐺𝑉
                                                             (6.20) 

radius 

volume 
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and the ratio of activation energy barriers for heterogeneous and homogeneous nucleation will 

be equal to the shape factor: 

                                                    
∆𝐺ℎ𝑒𝑡

∗

∆𝐺ℎ𝑜𝑚
∗ =

𝑉ℎ𝑒𝑡
∗

𝑉ℎ𝑜𝑚
∗ = 𝑆(𝜃)                                                 (6.21) 

where 𝑆(𝜃) =
1

2
(2 + cos 𝜃)(1 − cos 𝜃)2 

The potential of interface as the point of heterogeneous nucleation depends on cos , i.e. on 

the ratio 
𝛾𝛼𝛼

2𝛾𝛼𝛽
⁄ . The activation barrier of heterogeneous nucleation at grain boundaries can 

be reduced further at the point of contact of three or four grains, Fig. 6.6.  

 

         Fig. 6.6 Impact of angle  on the activation nucleation barrier at grain boundaries 

Exceptionally effective nucleation points for incoherent precipitates are on the high-angle 

grain boundaries. Further reduction of the activation energy may occur in case one of the 

interfaces contains a single grain and it is planar, while the other one is curved, Fig. 6.7. The 

nucleus will have an orientation relationship to the grain on the side of planar interface and it 

will grow into the grain adjacent by means of the curved incoherent interface. The nuclei with 

the lowest nucleation barrier will develop at the fastest rate.    

 

Fig. 6.7 The critical size of nucleus may be reduced, if the energy of interface with one grain 

is low (coherent - planar interface)  

The effectiveness of various defects with respect to heterogeneous nucleation will increase in 

this order: 

Grain interface 

at the contact 

of 3 grains

grain 

interface 

 hranice zrn 

at the 
contact 

 of 4 grains 

coherent 
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- Vacancies, 

- Dislocations, 

- Stacking faults, 

- Grain boundaries or interphase interfaces, 

- Free surfaces. 

The easiest and the most rapid nucleation should therefore occur on defects stated in the 

bottom of the list. Nevertheless, the importance of these defects with respect to the overall 

rate of transformation also depends on their relative frequency.  

If the concentration of heterogeneous nucleation points per unit of volume is marked C1,  the 

rate of heterogeneous nucleation will be expressed as: 

                               𝑁ℎ𝑜𝑚 = 𝜔𝐶1 exp(−
∆𝐺𝑚

𝑘𝑇
) exp(−

∆𝐺∗

𝑘𝑇
)     (nuclei m

-3 
s

-1
)          (6.22) 

For the rate of nucleation as a function of temperature refer to the Fig. 6.8. Measurable rate of 

nucleation apparently occurs at very low undercooling levels below Te.  

Relative differences in the heterogeneous and homogeneous rates of nucleation are defined by 

the formula: 

                                       
𝑁ℎ𝑒𝑡

𝑁ℎ𝑜𝑚
=  

𝐶1

𝐶𝑜
exp(

∆𝐺ℎ𝑜𝑚
∗ − ∆𝐺ℎ𝑒𝑡

∗

𝑘𝑇
)                                               (6.23) 

Remark: small differences in values of parameters  and Gm have been ignored in the 

formula above. 

 

 

Fig. 6.8 Rate of heterogeneous nucleation during precipitation of the phase  in alloy with 

composition Xo as a function of undercooling 
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The factor 
𝐶1

𝐶𝑂
 makes provision for the number of atoms at the point of heterogeneous 

nucleation with respect to the quantity of atoms in matrix. The following formula applies to 

nucleation at the grain boundary: 

                                                             
𝐶1

𝐶𝑂
=  

𝛿

𝐷
                                                        (6.24) 

 where  is the thickness of grain boundary and D refers to grain diameter.  

For very low driving force of transformation, when the activation energy for nucleation is 

very high, the greatest rates of nucleation will be experienced by points of the contact of three 

or four grains respectively. Increase of the driving force will establish grain boundaries as 

dominant defects for heterogeneous nucleation. Very high driving forces of transformation 

may result in the situation, when the greatest rate of nucleation corresponds with the 

homogeneous nucleation.  

The remarks mentioned above were relevant to nucleation during the isothermal nucleation 

process only. If the nucleation process runs under continuous cooling conditions, the driving 

force for nucleation will be increasing progressively in time. Under such circumstances, the 

initial stages of transformation will be associated with those points of nucleation, which may 

generate measurable rate of nucleation as fast as possible.  

6.1.3 Growth of Precipitates 

Successful critical nuclei are those with the lowest nucleation barrier, i.e. the lowest critical 

volume. When strain energy is absent, the shape of precipitate compliant with this rule will be 

convenient for minimising the total interface energy. Nuclei are usually bounded by a 

combination of coherent and semicoherent facets and smoothly curved incoherent interfaces. 

While the precipitate grows, these interfaces must be in motion and the shape of precipitate 

will be determined by relative rates of migration of particular interfaces. The mobility of 

incoherent interfaces is usually higher than in case of (semi)coherent interfaces.  

 

Fig. 6.9 The effect of interface type on morphology of a growing precipitate, A - semicoherent 

interface with low mobility, B – incoherent interface with high mobility 

Slow 

Fast 
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The Fig. 6.9 shows growth of the nucleus bounded with the curved incoherent interface and 

low-energy planar interface (the plane of good crystallographic matching with the matrix) into 

a disc or thin plate shape.   

Concentration profiles of the solute around particles of the  phase precipitating from the 

oversaturated matrix  have been illustrated in the Fig. 6.10. The initial concentration of 

component B in the oversaturated matrix is co. The process of precipitate growth is 

accompanied by a gradual decrease in concentration of the solutes in matrix; the time t refers 

to the concentration of atoms of the solutes at great distance from particles equal to 
c (t). 

The value 

ec refers to equilibrium concentration inside particles of the phase  and the value 


ec  characterises the equilibrium concentration within the matrix. The concentration c


 in 

matrix in the close vicinity to the interface / is determined by the local equilibrium between 

the  matrix   and  particle  - this equilibrium concentration is defined as the solubility of 

particles.  

 

 

  

 

 

 

 

Fig. 6.10 Diagram showing the changes of concentration of dissolved component depending 

on the distance from the centre of two growing particles of the  phase with radii r1(t) and 

r2(t), r2(t)  r1(t) 

The concentration 
c (t) of an oversaturated matrix at the initial stage of precipitate growth 

is much greater than the solubility value  c


(r). The difference ( c (t) - c
(r)) controlling 

the growth of particles is greater for larger particles. The concentration 
c (t) in matrix goes 

through a gradual decrease during the precipitate growth and that is why concentration 
c (t) 
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reaches the value c


 for the smallest particles after a certain time, so this particle reaches the 

critical size and its growth stops. Extension of the growth time will result in further decrease 

of c (t) and the critical size will be achieved gradually by particles of larger dimensions. 

The solubility of small particles c


(r) (concentration of dissolved component in the vicinity 

to the interface) exceeds the concentration of solutes in solution now and that is why these 

particles dissolve. 

 

Fig. 6.11 Diffusion along the grain boundaries may result in fast growth of precipitates on the 

grain boundaries 

Precipitates along the grain boundaries usually do not create a continuous layer and they are 

rather isolated particles. The growth of these particles can run at a much faster rate than 

allowed by the volume diffusion, Fig. 6.11. The growth of particles at grain boundaries 

comprises three steps: 

- Volume diffusion of the solute to the grain boundary, 

- Diffusion of solute along the grain boundary towards the edge of precipitate, 

- Diffusion along the / interface enabling accelerated precipitate growth. 

This mechanism plays a very important role in diffusion of substitution elements, e.g. 

precipitation of Cr23C6 carbides in Cr - Ni austenitic steels. 

6.1.4 Coarsening of Precipitates 

The final stage of precipitate growth is terminated with absolute removal of atoms of  

component B from oversaturated solution  (Gv = 0). However, the microstructure of a two-

phase alloy will remain in a non-equilibrium state until it reaches the lowest value of the total 

interfacial energy possible (A). That is the reason for progressive replacement of a high 

number density of fine particles of the precipitate with a smaller number of coarser 

precipitates with the generally smaller interfacial area. The rate of precipitate coarsening is 

Grain 
boundary 

Solute 
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increased with temperature. Coarsening of precipitates is usually followed by degradation of 

mechanical properties of materials.   

As far as alloys hardened through precipitation are concerned, the particle dimensions will 

always lie within a certain size interval due to difference in nucleation time and the growth 

rate of particles. The Fig. 6.12 shows two precipitates with different radii. Capillary effect 

causes the increase of concentration of the solute in the matrix in the vicinity of particles, as a 

function of the decreasing curvature of the particle, Fig. 6.13. That is the reason for 

occurrence of concentration gradients in the matrix; those will cause diffusion of the dissolved 

component from the smallest particles towards the largest ones. Small particles will be 

dissolving and the large ones will continue growing. The outcome of these processes will 

comprise gradual reduction of the particle number and enlargement of the mean particle 

radius. The first particles to dissolve will be the ones that formed nuclei with a great delay, 

Fig. 6.14. Particles that formed nuclei with time delay will also dissolve during the stage of 

precipitate growth, Fig. 6.14. Long annealing will leave the matrix with coarse particles of the 

 phase, which developed in the initial stage of precipitation, only. 

 

 

 

 

 

 

 

Fig. 6.12 Diagram showing the changes of concentration of the dissolved component during 

the particle coarsening process: dissolution of particles with radius r1(t), particles with the 

critical radius r

(t) and the growing particles r2(t), r2(t)  r1(t) 

Assuming that volume diffusion will be the mechanism controlling growth, the following 

relation, the so called Wagner equation, will apply:  

                                                         𝑟̅3 − 𝑟𝑜
3 = 𝑘𝑡                                                          (6.25) 
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where  𝑘 ∝ 𝐷𝛾𝑋𝑒, ro is the mean radius of particles in time t = 0, 𝑟̅ is the mean radius of 

particles in time t, D is the diffusion coefficient,  is the interfacial energy and Xe is the 

equilibrium solubility of very large particles. As the values of D and Xe grow exponentially 

with respect to temperature, the rate of coarsening will grow with the temperature rapidly.  

 

Fig. 6.13 Precipitate particles  with small radius (r2) have a higher molar Gibbs free energy 

than the particles with greater curvature radius (r1). The concentration of dissolved 

component B within the matrix  in the vicinity of the / interface  will be the greatest close 

to the smallest particles . 

 

 

 

 

 

 

 

 

 

Fig. 6.14 Growth trajectory of precipitate radius as a function of time and changes of the 

critical particle radius rk – dashed line, KB – nucleation stage, W – growth stage,  
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UL – coarsening stage 

The rate of particle coarsening in certain systems is not proportional to the cube of particle 

radius. Deviations from this relation may be caused by other diffusion mechanisms, e.g. along 

dislocations or grain boundaries or the rate of coarsening may be controlled by the interface 

Nevertheless, except for situation with the rate controlled by interface, the rate of coarsening 

should depend on the product of DXe. High-temperature alloys, the strength of which 

depends on the precipitation hardening, must show low value of one of these parameters at 

least.  

6.1.5 Precipitation Sequence 

In a number of systems, the metastable phases having the lowest activation energy barrier 

nucleate first. While the duration of exposure to higher temperature extends, these phases will 

dissolve gradually to be replaced with thermodynamically more stable phases. The driving 

force of these transcrystalline processes lies in difference between the mean concentration 

of solute in matrix cw and solubility of particles.  

 

 

 

 

 

 

 

 

 

Fig. 6.15 Diagram showing dependency of particle solubility for phases  and  on the time 

of exposure 

The Fig. 6.15 shows trajectories of growth for individual particles and the dashed line 

identifies the curve cw(t) defining gradual depletion of the matrix. If the particles of phase  

are small enough, they may be less soluble than particles of the  phase. The particles of 

phase  will grow faster in this case, i.e. the gradient of their growth will be greater than on 

the curve of already existing  particles. The bottom limit for concentration 
ac  is defined 
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by equilibrium concentration 

mc , therefore the growth trajectory of particles  show 

asymptotic approach to the limit value 

mc . The growth trajectory of particles  approach the 

equilibrium concentration 

mc  by asymptotic means. The concentration of dissolved 

component cw(t) in matrix drops continuously together with the exposure time and once it 

drops below the value 

mc  , particles of the  phase  have to dissolve. The lower the 

difference between solubility of 

mc  and 


mc , the more similar the behaviour of  and   

phases, the longer the potential coexistence of both phases in the matrix. 

6.2 Kinetics of Diffusional Transformations 

The course of diffusional phase transformation    conducted by means of a diffusion 

mechanism can be presented clearly by illustration of the transformation fraction (f) as a 

function of time and temperature, Fig. 6.16.  

  

Fig. 6.16 a) Kinetic diagram of diffusional decomposition, b) kinetic curves for T1 and T2, the 

growth of volume fraction of the new phase (f) occurs after a certain incubation period, 

which is a function of T 

The parameter f refers to volume fraction of the  phase at particular moment; it changes from 

0 to 1 at the end of the transformation process.  The C-curve marked 1 % represents a link of 
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points representing 1 % of phase  in the matrix of phase  and the curve 99 % identifies the 

end of decomposition of the  phase (microstructure contains 99 % of the phase ). The 

factors that determine dependency among  f, t and T include the rate of nucleation, the rate of 

growth, density and distribution of nucleation sites, overlapping of diffusion fields of adjacent 

transformed volumes and the mutual influence of adjacent transformed volumes.  Some of the 

problems are illustrated in the Fig. 6.17. After a rapid cooling to the transformation 

temperature, the metastable phase  can form at many nucleation sites, usually of 

heterogeneous type. One of the possibilities deals with a constant nucleation rate during the 

transformation, so there will be a broad range of particle sizes at any moment, Fig. 6.17a. 

Another option may be that all the nuclei develop at the beginning of transformation already, 

Fig. 6.17b. This is defined as saturation of nucleation sites. In the first case, the volume 

fraction of new phase will depend on the rate of nucleation as well as on the growth rate. In 

the second case, the volume fraction of new phase depends on the number of nucleation sites 

and the growth rate only.  

 

Fig. 6.17 a) Nucleation at a constant rate throughout the entire transformation, b) saturation 

of nucleation points – all the nuclei develop at the beginning of transformation, c) cellular 

transformation  

Transformations of type    involve gradual replacement of the whole master phase with 

the transformation product, Fig. 6.17c. Transformation will not complete with gradual 

reduction of the growth rate in these cases, it will end with mutual contact between adjacent 

Nucleation sites 

Beginning End 
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cells growing at a constant rate. This category includes the ferrite transformation in steel, for 

example.  

Assume a simple example for determination of the dependency between the volume fraction 

of a new phase (f) and the time and temperature during cellular transformation   , when 

cells  go through gradual nucleation at a constant rate N during the transformation process. If 

the cells grow as spheres at a constant rate v, the volume of cell that forms nucleus at the 

beginning of transformation will be defined by the formula: 

                                                    𝑉 =  
4

3
𝜋𝑟3 =

4

3
𝜋(𝑣𝑡)3                                              (6.26) 

where t is the time of transformation. 

The volume of cell to form nucleus with a delay  will be defined as follows: 

                                                      𝑉´ =  
4

3
𝜋𝑣3(𝑡 − 𝜏)3                                                 (6.27) 

The number of nuclei developed within the time increment d will be defined by the term Nd 

per unit of volume of the non-transformed  phase. If cells do not impinge each other, the 

total unit volume will be expressed as:  

                                              𝑓 =  ∑ 𝑉´ =  
4

3
𝜋𝑁𝑣3 ∫ (𝑡 −  𝜏)3𝑑𝜏

𝑡

0
                             (6.28) 

The equation for volume fraction of the new phase after integration will be:  

                                                                     𝑓 =  
𝜋

3
𝑁𝑣3𝑡4                                              (6.29) 

The equation will apply in case f  1 only. Cells of the  phase will start impinge each other 

as the time progresses and the rate of transformation will be reduced. The equation applicable 

to randomly distributed nuclei for short or long transformation times will be:   

                                                       𝑓 = 1 − exp(−
𝜋

3
𝑁𝑣3𝑡4)                                      (6.30) 

Note that the equation is the same as for short intervals, as 1 – exp (-z) z, if z  1. This 

equation is also applicable to long intervals, as both t  ∞ , as well as f  1. 

This equation is defined as the Johnson-Mehl-Avrami model. Expected mechanisms of 

nucleation and growth can be used to several equations in the form: 

                                                         𝑓 = 1 − exp(𝑘𝑡𝑛)                                                 (6.31) 
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where n = (1 – 4). Unless the mechanism of nucleation is changed, the coefficient n is 

independent on temperature. The coefficient k depends on rates of nucleation and growth and 

it is therefore very sensitive to the transformation temperature. Rapid transformations will be 

associated with high values of k.  

Diffusional transformations are in the TTT (or CCT) diagrams characterized by typical C-

shaped curves. That can be explained pursuant to changes in the rate of nucleation together 

with increase of undercooling. When the temperature approaches Te, the driving force of 

transformation will be very low, so both the rate of nucleation as well as the rate of growth are 

very low and the rate of transformation will be very slow. If T is very high, the rate of 

transformation is limited by slow rates of diffusion. The maximum rate of transformation is 

then obtained at medium transformation temperatures. 

6.3 Spinodal Decomposition 

The spinodal decomposition, which falls within the category of homogeneous 

transformations, does not involve any nucleation barrier. Assume a binary diagram with the 

miscibility gap in solid state, Fig. 6.18a. When heating an alloy with composition Xo to a high 

temperature T1 followed by cooling to the temperature T2, the initial composition of the alloy 

will be the same and its free energy will be illustrated by the point Go on the curve of Gibbs 

free energy shown in the Fig. 6.18b. However, the alloy is in unstable condition, as low 

fluctuations of its composition will produce adjacent A-rich and B-rich areas which will 

induce a drop of the Gibbs free energy in the system. That is why diffusion up the 

concentration gradient will be in progress until achievement of the equilibrium composition of 

X1 and X2, Fig. 6.19a. This process may occur only in alloys with such composition, where 

the curve of Gibbs free energy shows a negative curvature (
𝑑2𝐺

𝑑𝑋2 < 0). That means constitution 

of such alloy must be located between inflection points on the curve of Gibbs free energy. The 

dashed curve in Fig. 6.18a represents a link of inflection points for various temperatures and it 

is defined as a chemical spinodal.  

If the chemical composition of alloy lies outside the chemical spinodal, small changes in 

chemical composition of the solid solution  will result in an increase of free energy in the 

system. The free energy may be reduced only in case the chemical composition of nuclei is 

very different from the matrix composition. That is the reason why decomposition of an 

oversaturated solid solition takes place in areas outside the chemical spinodal by means of 
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nucleation and growth processes. Such case deals with diffusion occurring down the  

concentration gradient, Fig. 6.19b. 

 

Fig. 6.18 Alloys between spinodal points are unstable and they may decompose to form two 

coherent phases 1 and 2 without overcoming the activation energy barrier. Alloys between 

the curves of limited solubility and chemical spinodals are metastable and they may 

decompose only in case after nucleation of another phase. 

The rate of spinodal decomposition is controlled by the interdiffusion coefficient D. The value 

inside the chemical spinodal is D  0 and fluctuations of the composition will increase 

exponentially with time. The rate of transformation will rise with the decrease of wavelength 

, to a certain critical value only. When calculating the value  , the following two vital 

factors need to be considered: the interfacial energy and the coherent strain energy.  
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                                        a)                                                               b)  

Fig. 6.19 Schematic profiles of composition for decomposition of an oversaturated solid 

solution, a) composition Xo between curves of the chemical spinodal, b) composiition 𝑋𝑜
  

outside the curves of chemical spinodal, Fig. 6.18 

6.4 Discontinuous Transformation  

In some cases, precipitation on grain  boundaries does not result in formation of 

allotriomorphic particles or Widmanstätten patterns. The so called discontinuous or cellular 

precipitation is characteristic for movement of grain boundaries with the growing particles of 

precipitate, as shown in the Fig. 6.20. Morphology of transformation products is reminiscent 

of an eutectoid reaction. The general schema of a discontinuous reaction will be as follows:  

                                                          𝛼´ → 𝛼 +  𝛽                                                            (6.32) 

where 
´
 is the over-saturated matrix,  is the same phase with a lower level of over-

saturation by solute and  is the equilibrium precipitate. Mechanisms leading towards 

development of cellular precipitates nucleated at grain boundaries may be different for  

different alloys. 
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Fig. 6.20 Diagram showing individual stages of discontinuous precipitation 

The "discontinuous precipitation" reflects the fact that contents of solute undergo a 

discontinuous change when passing through the front of cellular precipitation. As far as 

mechanical characteristics are concerned, this type of precipitation is undesired, as the interior 

of cells often involves development of coarse precipitates. The Fig. 6.21 documents cells of 

discontinuous precipitation of M23C6 in an austenitic weld overlay of 19Cr – 12Ni type. The 

mechanism for development of these cells is shown in the Fig. 6.22a – c.   

 

Fig. 6.21 Discontinuous precipitation of M23C6 in an austenitic weld overlay of 19Cr – 12Ni 

type 

The Fig. 6.22a documents the condition, when the interior of austenitic grains includes 

numerous fine particles of M23C6 which is rich in chromium, whereas the particles of identical 

phase found on grain boundaries are significantly coarser. That relates to easier diffusion of 

3 m 
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chromium along the grain boundaries compared to the volume of grains. This precipitation 

mechanism is defined as continuous, as the precipitation of precipitate particles is followed by 

a continuous change to the matrix composition during the precipitation process. A coarse 

precipitate found at grain iboundary comprises a semi-coherent planar interface with grain  1. 

There is an orientation relationship between this particle K and the grain 1 , it is the "cube-to-

cube" ( (001)K // (001) 1, 100K // 1001). The growth of this particle occurs by movement 

of the curved incoherent interface into the grain  2 and it is accompanied with migration of 

the grain boundary,  Fig. 6.22b. Easy growth of particles at grain boundaries is enabled by 

diffusion of chromium along the grain boundaries, fine intragranular particles of M23C6 

dissolve upon contact with the moving interface to form a surrounding zone depleted in 

precipitates ("denuded zone"). The area behind such moving interface will show formation of 

lamellae of M23C6 particles with the orientation relationship of "cube-to-cube" type with grain 

1. Spherical particles inside cells of discontinuous decomposition represent "inherited" 

particles of M23C6, which initially precipitated in the grain 2 and were not dissolved during 

movement of the grain boundary. That is proven by the orientation relationship of these 

particles with the grain 2. The orientation of austenite inside the cell of discontinuous 

precipitation corresponds with the grain 1. In this case the discontinuous decomposition can 

be described using the following equation: 

                                           ´ + M23C6   + M23C6                                               (6.33)   

The discontinuous precipitation was followed by a drop in oversaturation of austenite, the 

type of precipitating phase in the continuous precipitation area was the same as in cells of 

discontinuous decomposition. As the fine particles in the initial microstructure were replaced 

with coarse lamellae, one could expect the discontinuous decomposition was followed by a 

drop of interfacial energy.   
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a)   

 

                                                           b) 

 

c) 

Fig. 6.22a-c Mechanism of discontinuous precipitation of M23C6 in a carburized austenitic 

weld overlay of 19Cr – 12Ni type 

6.5 Massive Transformation 

The Fig. 6.23 shows the binary diagram of Cu – Zn emphasizing the alloy with approx. 38 at. 

% Zn. For temperature levels exceeding approx. 800°C, the most stable condition of this alloy 

is represented by the phase , whereas below approx. 500°C the most stable phase  will be  

phase and the area between these temperatures show the stable mixture of phases  + . The 

type of transformation during decomposition of the phase  depends on the rate of cooling. 

Continuous precipitation of  

Zone depleted in chromium  

„Inherited“ particles M23C6 

with orientation relationship  

„cube to cube“ with grain ϒ2 

 

Lamellas M23C6 with orientation 

relationship  „cube to cube“ with 

grain ϒ1 

 

 

The same austenite orientation 

 

 

Dissolution of continuous 

precipitation on moving grain 

boundary 
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Slow and medium rates of cooling result in precipitation of particles of   phase from the 

oversaturated  phase. Slow cooling prefers transformation at low undercooling levels with 

development of equiaxed grains of  phase. Higher rates of cooling lead to transformation at 

lower temperature forming the Widmanstätten needle like morphology. As shown by the 

phase diagram of Cu – Zn, precipitating  particles  will contain more copper than the initial 

 phase, therefore the growth of  phase will be subject to diffusion of zinc over a long 

distance, away from the moving / interface. As copper and zinc occupy substitution 

positions, the diffusion process is relatively slow and that is why the curves showing 

formation of the  phase in a CCT diagram are present at relatively long time intervals, Fig. 

6.24.   

 

Fig. 6.23 Part of the Cu – Zn binary diagram showing equilibrium between phases  and . 

The values of Gibbs free energy will be the same in both phases at temperature To (G

=G


). 
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Fig. 6.24 Schematic CCT diagram for a system with massive transformation. Slow cooling (1) 

leads to precipitation of equiaxed grain of the  phase, whereas faster cooling (2) creates the 

Widmanstätten morphology. Medium-rate cooling (3) results in development of a massive 

transformation, fast cooling (4) creates martensite. 

 

In case the alloy is cooled fast enough, there is insufficient time for precipitation of the  

phase and the  phase can be preserved up to temperature levels below 500°C, where    

transformation can occur without any change of the chemical composition. This is defined as 

the massive transformation. The Fig. 6.25 illustrates grains of the  phase, which developed 

through the mechanism of massive transformation on interfaces of the master  phase; the 

starting temperature during hardening process is 850°C. A fast movement of the interface /  

causes uneven appearance of grain boundaries. As the composition of phases  and  is the 

same during massive transformation, massive particles  (m) may grow as fast the atoms of 

Cu and Zn are able to cross the /  interface without the need to diffuse over a long distance. 

CCT diagrams show the massive transformation in the form of a separate C-curve. Migration 

of the / interface is very similar to migration of grain boundaries during recrystallisation of 

a single-phase material. However, the driving force of massive transformation is several 

levels higher, which explains the high rate of massive transformation.  

Precipitation 

Massive 

Martensite 



Phase Transformations 
__________________________________________________________________________________ 

104 
 

 

Fig. 6.25 Massive  phase grains at grain boundaries of  in the alloy Cu – 38 at. % Zn 

hardened at the temperature of 850°C using ice brine at 0°C. Dark particles along the grain 

interfaces represent precipitates that developed by means of the nucleation and growth 

mechanism (precipitation) at a high temperature. 

The  phase may transform into the  phase via the massive mechanism, if the phase is 

cooled fast into the phase field of stable  phase to prevent precipitation of the  phase along 

the grain boundaries of  phase. As far as the thermodynamics is concerned, there is a 

theoretical possibility that massive transformation occurs at a higher temperature. One of the 

necessary prerequisites for massive transformation is that the free energy of the new phase is 

lower than the free energy of master phase of the same composition. Looking at an alloy 

comprising  Cu – 38 at. % Zn, the value of G

 is lower than G


 at temperatures below approx. 

700°C. The temperature levels, at which G

 = G


, are linked with a dashed line in the Fig. 

6.23. The massive transformation may theoretically occur within the two-phase field of the 

phase diagram anywhere below To. However, practical experience has proven that the 

massive transformation occurs within the single-phase area of the phase diagram only.  

Massive transformations occur in a number of alloys. Iron and its alloys require that the rate 

of cooling within the austenite field is high enough to prevent development of equilibrium 

decomposition products and insufficient for progress of martensitic transformation too. 

Microstructure of massive ferrite in iron with uneven grain boundaries is shown in the Fig. 

6.26.     
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Fig. 6.26 Massive  phase in Fe – 0,002%C alloy hardened from the temperature of 1000C 

into icy bath  

 Summary of terms in this chapter  

Diffusional transformations: caused by thermally activated movements of atoms across the 

interface. However, these phase transformations do not have to be accompanied by a change 

of chemical composition of phases. These transformations usually involve nucleation and the 

subsequent growth of nuclei.   

Precipitation: a phase transformation associated with gradual removal of oversaturation from 

a solid solution due to formation of particles of the new phase. It is formally divided into three 

stages: nucleation, growth and coarsening.  

Coarsening of precipitates: the final stage of precipitation, when the Gibbs free energy of 

the system drops due to a reduction of the total interfacial area. Small particles dissolve, large 

particles grow further but the volume fraction of precipitates remains constant.  

Precipitation sequence: the initial stage of precipitation may produce metastable phases with 

a low nucleation barrier, these are gradually replaced with thermodynamically more stable 

phases. 

Kinetics of diffuse transformations: the change of volume fraction of the new phase with 

time at a particular temperature can be described using the Johnson – Mehl - Avrami model. 

Knowledge of the progress of transformations in time at various temperatures enables 

processing of kinetic diagrams, e.g. TTT or CCT diagrams.   

Incubation period: the period until the start of diffusion transformation, it corresponds to a 

detection time of stable particles of the new phase in the matrix. This parameter is strongly 

temperature dependent. 

5 m 
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 Questions addressing the content covered 

1. Write the general scheme of eutectoid transformation. 

2. What are the characteristics of massive transformation? 

3. Derive the equation 6.6 and conclude the relations applicable to the critical radius of 

nucleus and the critical nucleation barrier. 

4. What makes the heterogeneous nucleation more efficient as compared to the homogeneous 

nucleation? 

5. What are the stages of precipitation process? 

6. What is the difference between the stages of growth and coarsening of precipitates? 

7. Write and explain the Wagner equation. 

8. What is the incubation period of diffusion transformations? 

9. Write and explain the Johnson-Mehl-Avrami model. 

10. What are the precipitation sequences? 

11. Describe the mechanism of spinodal decomposition. 

12. What are the basic characteristics of massive transformations? 

 

Exercises 

Exercise 1 

The approximate formula for the total driving force for precipitation in a regular solution is: 

                                    ∆𝐺𝑜 = 𝑅𝑇 [𝑋𝑜 ln
𝑋𝑜

𝑋𝑒
+ (1 −  𝑋𝑜) ln

(1− 𝑋𝑜)

(1− 𝑋𝑒)
] − (𝑋𝑜 − 𝑋𝑒)2                     (6.34) 

a) Use this equation to evaluate the total driving force released during transformation of  ´  +  at 

600K, if Xo=0,1, Xe = 0,02 and  = 0 (ideal solution), 

b) Estimate the volume fraction of precipitate in the equilibrium state, if  is the pure component B 

(𝑋𝐵
𝛽

= 1). Assume the molar volume is constant.  

c) If there is an alloy thermally processed to create a dispersion of precipitate with the pattern of 50 

nm, determine the total of the / interface  in 1m
3 

of alloy. Assume the precipitate distribution in 

corners of cubes with the edge length of 50 nm.  

d) If the interfacial energy is   = 200 mJm
-2

, what is the total interfacial energy per  1m
3
 and per 1 

mole of alloy? (Vm = 10
-5

 m
3
). 

e) What amount of the driving force will remain as the interfacial energy in the above mentioned case?  

f) Repeat steps c – e for precipitation of particles with the distance of 1 m. 
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Solution:  

a) Substitution into the equation (5.32) above produces the following result: Go = 420,3 J mol
-1

 

b) Using the lever rule, calculate the following: 

molar fraction of precipitate = 
( 𝑋𝑜−𝑋𝑒)

(𝑋𝛽−𝑋𝑒)
= 0.08  

Provided the molar volume is independent of composition, this will be the volume fraction of precipitate too. 

c) Assuming the particles precipitate in corners of a cube with edge length of 50 nm, the number of particles per 

1 m
3
 will be calculated as follows: 

1

(50 𝑥 10−9)3 = 8 𝑥 1021particles per m
-3 

 

Assume the volume of each particle is the same, the particles are spherical with the radius r. The total volume of 

particles per 1 m
3
 can be calculated as follows: 

8 𝑥 1021𝑥 
4

3
𝜋𝑟3 = 0,08  m3

, particle radius r = 13.4 nm. 

The total surface area of the interphase interface per 1 m
3
: 8 𝑥 1021𝑥 4𝜋𝑟2 = 1.8 𝑥 107m

2 

d) If =200 mJm
-2

 

Total The total interfacial energy = 200 x 1.8 x 10
7
 = 3,6 x 10

6
 Jm

-3
 of the alloy = 36 Jmol

-1 

e) Ratio remaining as the interfacial energy = 
36

420,3
 = 9% 

f) with the particle spacing of 1 m:  

the number of particles per 1 m
3
 = 

1

(1 𝑥 10−6)3 
 
= 1 x 10

18
 m

-3
 

Using the same method as for item c) the particle radius is 267 nm. 

The total interfacial surface area of particles per 1 m
3
 = 1 x 10

18
 x 4 x (2.67 x 10

-7
)

2
 = 8.96 x 10

5
 m

2 

Total interfacial energy = 1.8 x 10
5
 Jm

-3
 of alloy = 1.8 Jmol

-1 

Ratio remaining as the interfacial energy = 0.4 %. 
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7. Diffusionless Transformations   

 

 
Objective:   Completion of this chapter will enable you: 

 - define the basic characteristics of diffusionless transformations, 

- define the characteristic temperatures of martensitic transformation, 

- explain the shape deformation and surface relief during martensitic 

transformation,  

- describe the crystallography of martensitic transformation in steels,  

- characterize terms as "thermoelastic martensitic transformation" and "self-

accommodation martensite", 

- explain the models of pseudoelastic behaviour and shape memory effect. 

 

 
EXPLANATION 

Transformations defined as diffusionless transformations are associated with individual 

atomic movements shorter that one interatomic spacing. This product develops in steels 

during cooling from the austenitizing temperature at the rate exceeding the critical rate – the 

cooling curve may not intersect the C curves defining diffusional decomposition of austenite 

in the CCT diagram. The product of diffusionless transformation in iron-based alloys is called 

martensite. However, this term is also used in other metal and non-metal materials. Because 

of the technological importance of hardened steel, significant part of this chapter will be 

dedicated to characteristics of martensite in iron-based alloys.  

7.1 Martensite in Iron Alloys  

Martensite in steels represents oversaturated solid solution of carbon in ferrite. As you already 

learnt in the course called Materials Science, cavities present between the basic atoms in 

elementary cells are defined as tetrahedral or octahedral. The size of these cavities can be 

calculated provided atoms are seen as solid spheres of the same size. For a FCC lattice, the 

size (diameter) of these cavities will be: dtetr. = 0.225D and doct. = 0.414D, where D is the 

diameter of basic atom in the elementary cell. As for  iron (D = 0.252 nm), the size of 

 

 
Study time: 5 hours 



Phase Transformations 
__________________________________________________________________________________ 

109 
 

interstitial cavities reaches the following values: dtetr. = 0.0568 nm and doct. = 0.104 nm. The 

diameter of one atom of carbon is approx. 0.154 nm. This means that the presence of 

interstitial atom of carbon in the FCC elementary cell of iron induces a significant distortion 

of the lattice. Octahedral positions are occupied with preference.   

The size (diameter) of interstitial cavities in the BCC lattice is: dtetr. = 0.291D and doct. = 

0.155D. Although the octahedral position is smaller than the tetrahedral one, interstitial atoms 

occupy it with preference. This is related to the magnitude of shift of basic atoms surrounding 

the octahedron cavity: shift of two atoms is larger than that of the rest four atoms. The BCC 

lattice contains more "free" space than lattices with close-packed configurations of atoms 

(FCC, HCP). However, the greater number of interstitial positions in the BCC elementary cell 

causes the situation, when the "free" space pertaining to each interstitial position within the 

BCC lattice is smaller. Occupying of octahedral positions by carbon atoms can cause a 

significant distortion of the BCC lattice, Fig. 7.1. 

 

Fig. 7.1 Martensite in Fe – C alloys, a) octahedral positions (dashed) for interstitial atoms in 

the BCC lattice, b) large lattice distortion caused by the atom of carbon in octahedral 
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position, c) changes of  lattice parameters a and c as a function of carbon content in Fe – C 

alloys 

Preferential occupation of octahedral positions 00½ with carbon atoms results in distortion of 

the BCC elementary cell to form a tetragonal body centred cell. Distortion of the elementary 

cell of martensite by carbon atoms causes high hardness of martensite in Fe – C alloys. X-ray 

diffraction analysis at the temperature of –100°C (to prevent diffusion of carbon) has found 

out that the ratio of axes c/a in the tetragonal unit cell is a linear function of carbon content in 

Fe – C alloys: 

                                                  c/a = 1.005 + 0.045 (hm.%C)                                       (7.1) 

  

Fig. 7.2 Thermodynamic driving force during martensitic transformation (Ms) and reverse 

transformation (As) 

Martensite starts to develop during undercooling below the temperature Ms, which is called 

"martensite start". This temperature is associated with a certain driving force for diffusionless 

transformation of austenite into martensite, Fig. 7.2. The temperature Ms in low-carbon steels 

is approx. 550°C, it will drop rapidly with the rising content of carbon in the system of Fe – 

C, Fig. 7.3. The temperature Mf, which is called "martensite finish", represents the 

temperature, under which the fraction of martensite will stop rising. Mf does not have to 

correspond with 100 % of martensite, microstructure may retain some retained austenite. 

Maintenance of a certain fraction of austenite in the resultant microstructure can be supported 

by high value of elastic tensile stress between plates developing in the final stage of 
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transformation. This limits further growth and thickness increase of martensitic plates. The 

fraction of austenite remaining in Fe – C alloy generally increases with the rising carbon 

content.   

Deformation of austenite leads to the rise of temperature of martensite transformation start.  

The temperature Md is defined by the maximum rise in temperature Ms due to plastic 

deformation of austenite. Nevertheless, it is very likely that deformation of austenite below 

the temperature Md will change the temperature Ms during the subsequent undercooling of 

alloys into the range of martensite formation. These circumstances will usually lead to a 

reduction in temperature Ms – the improved stability of austenite is defined as mechanical 

stabilisation. 

 

Fig. 7.3 Dependency of temperatures MS and Mf on carbon content in Fe – C alloys 

Similar deformations of martensite will be accompanied by shift of temperatures As (austenite 

start) towards lower values. The minimum temperature of the deformed martensite 

transformation to austenite is defined as temperature Ad. The temperature To in Figs 7.2 and 

7.4 represents the temperature, at which the values of Gibbs free energy of austenite and 

martensite are the same. 
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Fig. 7.4 Effect of deformation on the shift of transformation temperatures 

 

7.1.1 Shape Deformation during Martensitic Transformation 

Profile distortion is a characteristic feature of martensitic transformation. The glissile 

movement of dislocations creates a level step at the point, where the glissile plane cuts the 

crystal, Fig. 7.5. Movement of many dislocations at parallel glissile planes causes a 

macroscopic shear. Glissile movement of dislocations includes a change to the crystal shape 

but it does not alter the crystal structure. Martensitic transformation brings a change to the 

atomic configuration by means of process, which reminds of shear deformation, into new 

positions corresponding with martensite. That is why the crystal undergoing transformation 

must be subject to the corresponding macroscopic change of shape. Dislocations responsible 

for deformation are located within the interface ´/, these induce deformation when moving, 

together with a change of crystal structure to martensite. This is the so called glissile 

interface.  
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Fig. 7.5a) and b) level caused by glissile movement of dislocations, c) and d) a big number of 

glissile dislocations causes a macroscopic shear, e) deformation with an invariant plane 

associated with a uniaxial dilatation, f) deformation with an invariant plane associated with 

shear, g) IPS - deformation with an invariant plane, which represents a combined effect of 

dilatation and shear 

Due to the elastic deformation during martensitic transformation, the initial straight surface of 

the sample is inclined around the line that represents intersection of the interface plane and the 

free surface, it gives rise to so called surface relief. The metallographic examination shown in 

the Fig. 7.6a carried out on a polished sample which was scratched  with a series of parallel 

lines before undercooling to the temperature MS. Creation of a martensitic crystal caused a 

change to inclination of lines but the continuity of lines in the vicinity of the ´/ interface  

remained intact.  Intact coherence of lines shows that the shape deformation does not cause 

any rotation of the interface plane – otherwise keeping of coherence between austenite and 

martensite would require plastic deformation to cause additional shift of lines within the 

interface. In order to keep the interface plane ´/, the so called habit plane (Fig. 7.6b), 

undistorted during transformation, martensitic transformation can be imagined as a 

homogeneous shear deformation at the direction parallel to the interface - see the arrows in 

Fig. 7.6a. The transformation   ´ is also associated with approx. 3 – 4% dilatation, which 

takes place perpendicularly to the habit plane, see Fig. 7.5.  

(e) Uniaxial 

     dilatation 
Shear 
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Fig. 7.6 a) Development of surface relief during martensitic transformation, b) unrotated and 

undistorted interface plane /´is called "the habit plane" 

Creation of martensite is associated with coordinated movement of atoms. That results in a 

close relationship between the lattices of austenite and martensite. Every martensitic 

transformation has a reproducible orientation relationship between lattices of the master 

phase and martensite. This relationship is usually expressed by parallelism of close - packed 

planes and close - packed directions lying in these planes.   

X-ray diffraction was used to define the following two orientation relationships in various 

iron-based alloys:  

Kurdjumov – Sachs relation: {1 1 1}γ  // {0 1 1}α, <1 0 1̅>γ  // <1 1̅ 1>α,                             (7.2) 

Nishiyama – Wasserman relation: {1 1 1}γ // {0 1 1}α, <1 0 1̅>γ // <1 00>α                    (7.3)      

These orientation relationships differ in terms of rotation around <1 1 1>α by the angle of 

5.3°. Progressive development in experimental methods led to conclusion that the definition 

of above mentioned orientation relationships is approximate only. The actual orientation 

relationships are irrational, i.e. these cannot be exactly expressed by parallelism of planes 

with low Miller indices. 

7.1.2 Crystallography of Martensitic Transformation in Steels 

Martensitic transformation is diffusionless, so the change of crystalline structure occurs in 

terms of homogeneous deformation of the initial austenite. The deformation required for 

transformation of FCC lattice of austenite into BCC lattice of martensite was firstly designed 

Surface 

Habit plane 
of 
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by Bain, Fig. 7.7. The FCC lattice shows a tetragonal body - centred elementary cell  

(parameters a/2, a). Its transformation into a BCC unit cell with lattice parameter ´of 

martensite requires an even expansion in the plane (001) by approx. 12 % and compression 

along the axis 001 by approx. 17 %. The Bain model implies the following orientation 

relationship between the initial lattice of austenite and martensite: 

                                 001  // 001    11̅0 // 100    110 // 010                             (7.4)  

 

Fig. 7.7 Model of lattice correspondence for development of martensite out of austenite, a) 

tetragonal elementary cell in austenite, b) distortion of a tetragonal cell of austenite with 

development of a tetragonal or BCC unit cell of martensite  

However, this orientation relationship has not been confirmed by experiments. The main 

cause is that the Bain deformation does not represent a full deformation, as it requires a high 

level of interface coherence. Any deformation transformation of austenite into martensite 

must keep one line invariant, i.e. undeformed and undistorted.  Such deformation is called 

deformation with invariant line. The Fig. 7.8 shows austenite as a sphere deformed into a 

rotation ellipsoid due to Bain deformation (B). Deformation B does not leave any line that is 

undeformed and undistorted. Lines wx and yz are undistorted but they are rotated into new 

positions w´x´and y´z´. Such rotated lines are not invariant. Nevertheless, a combination of 

Bain deformation (B) and rotation of a solid body (R) results in overlapping of lines yz and 
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y´z´, it is therefore a deformation with invariant line. That is the reason, why the orientation 

relationship derived from the Bain correspondence has not been proven by experiments.  

 

Fig. 7.8 a) and b) show the impact of Bain deformation on austenite, which is represented by 

a sphere in its initial state. Pure deformation transforms the sphere into a rotation ellipsoid. 

c) deformation with invariant line is obtained by combination of Bain deformation and 

rotation of the solid body by the angle , parameters a1, a2 and a3 are relevant to axes [100]γ 

, [010]γ and [001]γ. 

Another problem is the fact that no rotation can change the Bain deformation B into 

deformation with invariant plane. Such situation would require existence of two parallel 

invariant lines. This implies that austenite cannot be transformed into martensite by means of 

a homogeneous deformation, which leaves one of the planes invariant. Nevertheless, 

experimental examination of products of the martensitic transformation proves that shape 

deformation leaves one interface plane between austenite and martensite invariant. 

Phenomenological theory of martensite crystallography deals with this problem in an elegant 

way: Bain deformation changes the structure of initial phase into the structure of martensite. 

Due to combination with a solid body rotation the homogeneous deformation (RB) 

corresponds to an invariant line deformation – steps a to c in Fig. 7.9. Nevertheless, the shape 

deformation observed matches the shape deformation with invariant plane P1 (step a  b in 

Fig. 7.9) but that produces an incorrect crystalline structure of martensite. In case the second 

homogeneous shear deformation P2 is combined with the deformation P1 (step b  c), this 

will produce the correct structure and a wrong profile: 

                                                                  P1P2 = RB                                                        (7.5) 
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Fig. 7.9 Phenomenological theory of martensitic transformation 

These problems are solved, if the impact of P2 on shape deformation is invalidated by the 

macroscopically inhomogeneous invariant deformation of lattice, which may occur either by 

slip or twinning, Fig. 7.9.  The theory explains all characteristics of martensite crystallography 

observed. The orientation relationship is predicted when the Bain deformation is 

supplemented by rotation, which results in deformation with invariant line. The habit plane 

has no rational indices, as the magnitude of lattice invariant deformation is usually not 

rational. The theory predicts that substructure of martensite may include dislocations or twins. 

The martensitic transformation occurs to ensure a macroscopic match of the shape 

deformation and the invariant plane, as this enables reduction of the total strain energy.     

7.1.3 Morphology of Martensite in Iron Alloys 

Martensitic crystals often adopt plate-like shapes and they are spread over the full width of the 

prior austenitic grain. It has been proven that martensitic plates grow at very high rate, which 

approximates the speed of sound in metals. Martensite can usually grow independent of 

thermal activation; this is called the athermal growth. Fig. 7.10 a,b documents that the 

volume fraction of martensite rises through gradual transformation of austenite, which is 
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preserved among the martensite plates already present.  The first plates of martensite with a 

large free path to grow (depends on the size of the austenitic grain) may induce development 

of micro-defects due to their dynamic effects when impacting on prior austenite grain 

boundaries. The free path of further developing plates will be shorter, Fig. 7.10b.  

  

Martensitic plates cannot grow beyond the prior austenite grain boundary, as austenitic grains 

are usually separated by high-angle boundaries and a transition into the adjacent grain would 

infringe the orientation relationship between the austenitic matrix and the martensitic plate. 

Martensitic transformation in high-carbon steels never runs until the very end, there is some 

retained austenite left among martensitic plates. Another feature of martensite in such steels is 

the autocatalytic effect ("burst") demonstrated by the process, when one martensite plate 

triggers nucleation of several other plates in its vicinity, probably because of local stress 

concentration, when the first martensite plate hits an obstacle, e.g. boundary of the prior 

austenite grain.   

Martensitic plates in steels with carbon content exceeding approx. 0.6 wt. % usually adopt 

lenticular shape that is caused by restrictive effects of lattice, which prevents shape 

deformation accompanying the martensitic transformation. That complicates accurate 

Fig. 7.10 a) and b) Growth of martensitic 

plates in high-carbon austenite below the 

temperature MS, 

c) morphology of  plate-like martensite in alloy 

Fe –Ni – C, 

Remark:  in plate centres are ribs, the so called 

"midribs" 

(c) 
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determination of the habit plane. The habit plane of plate-like martensite is irrational and it is 

close to planes type 225 in medium-carbon steel, while it is near the planes type 259 in 

high-carbon steels. 

The progress of transmission electron microscopy enabled experiments to prove that 

martensite may contain both dislocations as well as transformation twins. Centres of 

martensite plates show the midribs in some alloys, every midrib is surrounded with high 

quantities of thin transformation twins. Twins on plate peripheries may be replaced with high 

density of dislocations,  Fig. 7.11. The density of dislocations in iron-based martensite reaches 

the levels of 10
11

 – 10
12

 cm
-2

, which is the value close to density of dislocations in metals 

subjected to intensive cold plastic deformation. The ratio comprising areas with twins or 

dislocations in particular martensite plates is a sensitive function of chemical composition of 

alloys.  

 

Fig. 7.11 Internal structure of martensitic plate (M) in a high-carbon steel 

Low carbon steels develop the lath martensite formed by long and approx. 0.5 m wide laths. 

Individual laths represent separated cases of nucleation, which is evidenced by thin films of 

retained austenite between laths. Groups of parallel laths form blocks, where individual laths 

are usually separated by low angle boundaries, Fig. 7.12. One prior austenite grain may 

include several packets formed by blocks that are usually separated by high angle boundaries. 

The habit plane of lath martensite approximates the planes type 111 and that is why 

individual prior austenite grains contain max. 4 packets of martensitic laths. The volume 

fraction of retained austenite in lath martensite is usually very low ( 5 vol.%). 

Inhomogeneous invariant deformation within martensitic laths occurs almost exclusively by 

means of slip mechanism.  
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                                 a)                                                                      b) 

Fig. 7.12 a) Scheme of internal structure of lath (dislocation) martensite, a) Packets, b) 

Blocks, c) Martensitic laths, b) Lath martensite in a modified 9%CrMoV steel 

7.1.4 Nucleation and Martensite Growth 

The driving force for start of martensitic transformation can be expressed as To – Ms, where To 

is the temperature, at which the free energy of martensite and austenite is the same, Fig. 7.2. 

This figure also shows the temperature As, when martensite starts transforming back into 

austenite during annealing. Experimental examinations have shown that systems with 

significant shape deformation during the martensitic transformation involve a large driving 

force and the temperature interval Ms – Mf is broad. As far as iron based alloys are concerned, 

the difference between temperatures Ms and Mf amounts to approx. 200°C. The deformation 

energy following the development of a small martensitic plate likely plays an important role 

in the nucleation process. Athermal reaction may be handled with application of the classic 

theory of homogeneous nucleation, where: 

a) nuclei develop fast upon achievement of Ms, 

b) subcritical nuclei exist in the initial lattice and these become supercritical upon 

achievement of Ms temperature.  

The total change of free energy during nucleation comprises three terms: 

- Change of the chemical free energy (G = G´ - G), 

- Strain energy, 

- Interfacial energy between austenite and martensite.  

 The following formula applies to a semicoherent nucleus of martensite of oblate shape with 

the radius r and half thickness c: 
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                                    ∆𝐺 =  
4

3
𝜋𝑟2𝑐∆𝐺 + 

4

3
𝜋𝑟𝑐2𝐴 + 2𝜋𝑟2                                    (7.6) 

where A is the factor of strain energy,  is the energy of /´ interface per unit of area and G 

is the change of chemical free energy per unit of volume. 

The critical size of nucleus is determined by the minimum of G: 

                                                 𝑐∗ =  −2/∆𝐺,𝑟∗ = 4𝐴/∆𝐺2                                     (7.7) 

and the critical barrier is defined as: 

                                                        ∆𝐺∗ = 32𝜋𝐴23/3∆𝐺4                                           (7.8)  

Substituting the equation (7.8) with rational values of G, A and , the calculated value of 

G
 

 is so high that the nucleation barrier is too large. However, it is very unlikely in this 

respect that nucleation of martensite could occur due to random fluctuations. Results obtained 

by these calculations indicate that nucleation of martensite must occur by heterogeneous  

nucleation on the already existing nuclei, which are assumed to lie beyond the maximum 

threshold on the curve of free energy. Nevertheless, there has been no experimental evidence 

submitted to prove the existence of such nuclei.  

It has been assumed that the nuclei have a semicoherent dislocation interface with austenite in 

form of parallel dislocation loops, which link the nucleus with surrounding lattice, Fig. 7.13. 

The growth then occurs by nucleation of new dislocation loops that enlarge the original 

nucleus. The growth of particular martensitic plates occurs at an extremely high rate of the 

order of 10
3
 ms

-1
. It has been discovered that the growth rate is constant within a broad range 

of temperatures, which indicates that there is not strong thermal activation of the growth 

process. That complies with the fact that the transformation does not involve any diffusion. 

The assumption is that growth occurs by movement of the array of parallel dislocations with 

the same Burgers vector lying in the interface. When the /´ interface  moves into austenitic 

lattice, dislocations move by slip mechanism along the relevant slip planes (glissile interface). 

The movement of dislocations is associated with the movement of habit plane, the movement 

of interface occurs at the direction perpendicular to this plane. 

 

There are generally three different types of kinetics for martensite formation, Fig. 7.14: 

a) athermal transformation, where the fraction of austenite transformed depends on the 

transformation temperature only and the dependency of martensite fraction on the 

transformation temperature is of sigmoidal shape, 
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b) athermal transformation, which begins with a fast formation of a significant fraction of 

martensite ("burst") – this martensite fraction forms isothermally. Further formation of 

martensite upon temperature drop occurs athermally.  

c) isothermal transformation, the martensite fraction at a particular temperature is 

proportional to transformation time. Transformations of this type occur in carbon free iron 

based alloys, e.g. Fe – Ni.  

 

                               Fig. 7.13 Dislocation model of martensite nucleus 

  

 

Fig. 7.14 Transformation curves of martensite, a) athermal transformation, b) athermal 

transformation with the autocatalytic ("burst") effect, c) isothermal transformation 

7.2 Shape Memory Effect and Superelasticity 

Martensitic transformation may be associated with special effects in some alloys. These 

effects include mainly superelasticity and shape memory effect.  The Fig. 7.15 shows stress - 

temperature dependence with designated areas, where transformation superelasticity (SE) and 

dislocation loops 

tim

e 
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shape memory effect (SME) may occur. Both effects are applicable only to those levels of 

stress lying below the critical stress for slip, i.e. the mobility of /´ interface must not be 

degraded by plastic deformation. Transformation Superelasticity is associated with the stress 

induced martensitic transformation in a high temperature phase (T  Af). Superelasticity can 

also develop at temperatures below Mf. Such case involves re-orientation of  the martensitic 

variants present in the martensitic microstructure, that is why this is called the re-alignment 

superelasticity.  

 

Fig. 7.15 Temperature-stress areas of existence of the transformation superelasticity (SE) and 

shape memory effect (SME)    

Shape memory effect is closely related to the martensitic transformation, nevertheless this 

effect occurs in some systems only, where the martensitic transformation can occur.  This 

issue requires identification of criteria that need to be met to ensure the system shows shape 

memory characteristics up to several per cent. The following criteria are important: 

a) the first and the most important prerequisite is that the system involves occurrence of the 

thermoelastic martensitic transformation. This precondition basically implies that the 

magnitude of deformation during transformation is not sufficient to induce plastic 

deformation either in the parent phase or martensite. The thermoelastic martensitic 

transformation is characteristic for its /´ interface  being able to move in both directions 

easily in response to temperature changes, i.e. the fraction of martensite may increase or 

decrease.  

b) martensitic plates in the resultant microstructure must create self accommodating groups. 

Minimising of the total deformation energy is associated with the formation of certain 

crystallographic variants of martensitic crystals.  
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c) adjacent plates should exhibit such interfaces that they can move in any direction without 

losing the memory of their positions. This criterion is met, if the majority of these interfaces 

complies with twinning orientation of adjacent crystals, Fig. 7.16. 

 

                Fig. 7.16 Martensitic variants with twinning orientation in a NiTi alloy 

d) Long range ordering of atoms, both in austenite and martensite, gives a preference to the 

shape memory effect, even though this is not a substantial requirement. The existence of 

atomic ordering limits the number of variants of martensitic crystals and increases the stress 

threshold for loss of thermoelastic reversibility due to the occurrence of plastic deformation in 

the vicinity of /’ interface. For a long range ordered structure of a high temperature phase 

(type B2) in NiTi alloy see the Fig. 7.17.  

 

Fig. 7.17 Ordered  structure of the high temperature phase (B2 type) in NiTi alloy, Ni – black 

atoms, Ti – white atom 

The shape deformation introduced by martensitic transformation can be reversed by inverse 

transformation into the master phase. Let us assume that several variants of  martensitic 

crystals develop during cooling of austenite, these crystals ensure mutual accommodation of 

the shape deformation and that is why there is no change of shape – this is called self- 

accommodation martensite, Fig. 7.18. Application of external stress causes growth of a 

0.5 m 



Phase Transformations 
__________________________________________________________________________________ 

125 
 

conveniently oriented variant of martensite, which results in shape change. Heating causes a 

shape change in the opposite direction, so the original shape is restored. This phenomenon is 

called the shape memory effect.  Excessive deformation (greater than needed to create one 

variant of martensite) would result in a permanent plastic deformation and loss of the shape 

memory effect.  

 

      Fig. 7.18 General diagram of the shape memory effect 

The shape-memory effect and superelastic deformation can be described using a series of 

diagrams showing stress/deformation curves obtained at various temperatures, Fig. 7.19. 

Assume a tensile test sample of alloy with the shape memory effect; deformation in the tensile 

machine is monitored with records of stress generated within the sample. For a tensile test 

performed at the temperature T1  Md the stress - deformation records show elastic 

deformation up to a high level of stress, followed by a limited plastic deformation and 

completed with a brittle fracture. The master phase B2 is resistant to any phase transformation 

at temperature T1. The behaviour described corresponds with expected characteristics of an 

intermetallic compound.  

The phase B2 will be unstable at the test temperature T2 (Md  T2  Af) with respect to the 

stress induced martensitic transformation, which occurs when the stress reaches its threshold 

level at point 1 in the stress - deformation diagram, Fig. 7.19. The area of plastic flow 

between points 1 and 2 is associated with an increasing volume fraction of martensite. That 

results in formation of such a variant of martensite which is most conveniently oriented with 

respect to the acting stress. Unloading of the sample is followed by drop of stress from point 2 

to point 3, similarly to elastic unloading.  At point 3 the reduction of the volume fraction of 

stress induced martensite starts and the stress - deformation dependency copies the trajectory 

3  4. The closed stress - deformation hysteresis loop proves that the stress induced 

martensite fully transforms back into the master phase during unloading. The nonlinear part of 

cooling heat deformation 

required 
shape 
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deformation, which is removable during alleviation, is defined as a superelastic deformation, 

Fig. 7.19.  

 

Fig. 7.19 Diagram illustrating superelastic (pseudoelastic) behaviour and  shape memory 

effect in alloys exhibiting martensitic transformation 3  

The stress - deformation curve at temperature T3 (T3  Mf) shows a deviation from the elastic 

behaviour at a relatively low stress, such deviation results in development of the plateau (5  

6), Fig. 7.19. Alleviation from point 6 is associated with elastic alleviation into point 7. 

However, the plastic deformation at point 7 is removable by heating to a temperature 

exceeding Af. This process for deformation restoring (shape restoration) of a material 

deformed by superelastic mechanism, when subject to the cycle of heating to the master 

phase, is called the shape memory effect. 

If deformation occurring at the temperature T3 continues beyond point 6, the second stage of a 

linearly elastic deformation will appear. Stress is rising gradually up to the point 8, where the 

deviation from linearity occurs. Alleviation from the points 8 leads to linear elastic restoration 
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of deformation (8´  9). Subsequent annealing above Af ensures limited strain recovery (9  

10).  

When subject to repeated temperature and deformation cycles, parts made of some alloys 

show the two way shape memory effect. Under such circumstances, the parts (samples) 

remain in two states of deformation (or two shapes) at two temperatures, one of them exceeds 

Af and the other one is below Mf. The two way shape memory effect can be characterised by 

means of the temperature-deformation cycle abcd in the Fig. 7.19.      

Fig. 7.19 illustrates the ideal course of various effects with martensitic phase transformation: 

the superelastic deformation, the shape-memory effect and the two-way shape-memory effect. 

The physical processes associated with these effects are not identical for all alloys exhibiting 

shape memory. In spite of differences between individual systems, the processes responsible 

for the above mentioned effects can be simply described as follows: Temperatures between Af 

and Md may induce transformation of austenite into martensite if the chemical driving force 

for transformation is increased by means of applied mechanical stress. The deviation from 

linear elastic behaviour is observed at the level of stress adequate for initiation of stress 

induced martensitic transformation. Further rise of stress will lead to increase of the fraction 

of martensite; the mechanical work associated with the applied stress is used fully to create a 

metastable martensitic phase. Martensite developed under these conditions remains in 

thermoelastic equilibrium, that is why the transformation can be reversed (martensite can be 

transformed into austenite), if the level of applied stress is reduced. The path of unloading 

(curve 2 - 3 - 4) comprises the elastic unloading (2  3) followed by reverse transformation 

of martensite into austenite (3  4), Fig. 7.19. The loop therefore represents the stress - 

deformation dependency relevant to the stress induced martensitic transformation.    

Deformation of fully martensitic structure at temperatures below Mf shows a pseudoplastic 

flow (5  6), which can be fully restored by means of a thermal cycle, as described 

above.That is contradictory to the usual plastic deformation of metals and alloys by means of 

dislocation slip with a shift of certain part of crystal above the slip plane into new positions 

with identical alignment of atoms around. As the slip process is irreversible, there is no 

tendency towards a reversed occurrence of the deformation path. The slip mechanism cannot 

explain a removable pseudoplastic deformation. The initial fully martensitic structure 

comprises several variants of martensitic crystals aligned in such manner that the deformation 

energy of crystal assembly is minimised (self-accommodation martensite). Experiments have 

proven that the nature of most interfaces between martensitic crystals corresponds to twinning 



Phase Transformations 
__________________________________________________________________________________ 

128 
 

interfaces, Fig. 7.16. Application of external stress causes convenient orientation of certain 

variants towards growth, whereas the orientation of others remains inconvenient. 

Pseudoplastic flow may occur pursuant to such re-orientation process, which is irreversible 

during unloading. That interferes with the self accommodating effect in original martensite. 

The thermal cycle via austenitic phase restores the self accommodating assembly of 

martensite variants and this process removes the pseudoplastic deformation, Fig. 7.19.    

When subject to cycles of pseudoplastic deformation and shape restoration, a component 

made of alloy with shape memory shows a two way memory effect. Such component then 

adopts two shapes given by two states corresponding to two temperatures, one of them below 

Mf and the other one exceeding Af. Two way shape memory effect develops due to 

accumulation of residual plastic deformation in material during a repeated thermal cycling. 

The residual stress finally reaches such level, where it can control the pseudoplastic 

deformation without implementation of any external stress. Shape is restored via the heating 

cycle by usual means.  

7.2.1 Transformation Sequence in NiTi Alloy 

As far as alloys with shape memory are concerned, the NiTi alloy is an exceptional material. 

Transformation temperatures and sequences of phase transformations in NiTi alloys are 

sensitive to chemical composition of alloys, thermal processing that induces the shape effect, 

previous cold forming and the externally applied stress. When fully annealed, the NiTi alloy 

comprising composition close to equiatomic shows a single peak only in the DSC (differential 

scanning calorimetry) record during continuous annealing or continuous cooling, Fig. 7.20. 

That proves the fact the martensitic transformation B2 (master phase, BCC long-range 

ordered, Fig. 7.17)  B19´ and the reverse transformation B19´  B2 occur within a single 

step.  

Subjecting the same alloy to cold forming with approx. 15 % width reduction, the 

transformation during cooling occurs in two stages: B2  R and R  B19´, Fig. 7.20. 

Transformations during annealing occur within a single step producing a single endothermic 

peak. The difference in temperature between transformations B2  R and R  B19´ 

increases with the rising level of the preceding cold deformation. TEM examination of thin 

foils made of the above mentioned alloy close the transition of B2 R showed diffraction 

patterns with spots at such positions, which divide any reciprocal vector B2 into thirds 

precisely. A drop in sample temperature produces clearer plates of R phase, which undergo 

mutual arrangements within self-accommodation groups. In situ experiments have proven that 
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plates of the R-phase can nucleate at small centres of deformation, e.g. at dislocations. As 

these plates grow and fill in the space of B2 grain, the diffraction patterns will start showing 

sharp spots at 1/3 of the distance of individual diffraction vectors of the phase B2. Further 

cooling led to transformation of the R-phase into a martensitic phase of type B19 

(orthorhombic cell).  Six crystal variants of the phase B19 can be arranged into a self-

accommodation group, which minimises the overall shape deformation, Fig. 7.21.  

 

Fig. 7.20 DSC record showing temperatures of transformation and transformations sequences 

in the NiTi alloy 3 



Phase Transformations 
__________________________________________________________________________________ 

130 
 

 

Fig. 7.21 Self-accommodation model of martensite B19, 6 variants of martensitic crystals3 

The lattice shear in plane (100)o and along the direction of 001o finally transforms the 

orthorhombic structure of B19 into the monoclinic structure of B19´. Each orthorhombic 

variant may produce 2 monoclinic variants, i. e.  each grain of the phase B2 may include the 

total of 12 variants of the phase B19´.  

7.2.2 Temperature-Actuated Switch 

The shape of sample to be "stored in memory" must be created by means of plastic 

deformation first - either cold or hot deformation. However, this process should not be 

accompanied by formation of martensite. The material therefore needs to be in a specific 

state, which may require additional thermal processing. The Fig. 7.22 showing a temperature-

actuated switch defines two different shape systems. The initial state can be achieved by hot 

extrusion or rod drawing and it may or may not be associated with any additional hot or cold 

deformation to obtain the shape required. The part in required shape must be heat treated in a 

mode including high-temperature annealing with subsequent hardening in water. Assuming 

the alloy composition, when the temperature Mf exceeds the ambient temperature level, the 

sample will be in martensitic condition after heat treatment. To induce the shape memory, 

samples in martensitic condition are either bent or straightened (see Fig. 7.22) and placed into 

a mechanical controller at ambient temperature. If the temperature of controller exceeds the 

temperature of reverse transformation of material with shape memory, the sample will be 

restored into the original shape ("stored in memory"). That results in disconnection or 

connection of electrical contacts.  

Induction of a two-way shape memory effect requires application of special procedures when 

handling the shape-memory device. That can be explained once again, using a temperature-

actuated electrical switch. If the sample in the shape "stored in memory" cools down to the 

ambient temperature again, it will not be expected to change its shape any more. Re-using of 



Phase Transformations 
__________________________________________________________________________________ 

131 
 

samples after occurrence of the shape memory effect requires their repeated deformation (bent 

or straightened, Fig. 7.22). Further heating of such deformed samples to temperature levels 

exceeding Af then induce the shape-memory effect. If this cycle, i.e. bending - heating - 

cooling, is repeated several times, this will set up the two-way memory. Cooling will bring 

the sample to a spontaneous change into the deformed shape, which will either connect or 

disconnect the electric contacts during cooling. This repeated cycling comprising deformation 

of material in martensitic state followed by the heating-cooling cycle is called "training". This 

cycling enables induction of the two-way memory effect. 

   

Fig. 7.22 Temperature-actuated switch designed to be activated or deactivated above a 

certain temperature level 4 

 Summary of terms in this chapter  

Diffusionless transformation: a phase transformation associated with relocation of atoms 

over distances below one interatomic spacing . Products of diffusionless transformation are 

usually defined as martensite. Owing to the coordinated movement of atoms resembling a 

shear deformation, this transformation is often defined as a shear or military transformation. 

Shape deformation:  a diffusionless transformation induces a change in shape of crystals, 

which relates to a coordinated movement of atoms during transformation. Martensitic 

transformation is accompanied by the formation of a surface relief. 
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Orientation relationship: as the movement of atoms during diffusionless transformation is 

coordinated, there is a crystallographic relationship between the original phase and martensite. 

The orientation relationship is usually expressed by parallelism of atomic planes with low 

Miller indices of both phases as well as by parallelism of directions lying in such parallel 

planes. 

Habit plane: a diffusionless transformation represents deformation with an invariant plane, 

i.e. the interface plane between the initial phase and martensite is undistorted and unrotated. 

This plane is called "the habit plane". 

Characteristic temperatures of martensitic transformation: MS –start temperature of 

transformation (martensite start), Mf – finish temperature of transformation (martensite 

finish), Md – the maximum temperature to allow start of the martensitic transformation after 

plastic deformation of a high temperature phase (austenite).  

Superelasticity: stress induced martensitic transformation in certain alloys results in 

significant change to the sample shape; the sample shape will be restored during unloading.  

Shape memory effect: in alloys with thermoelastic martensitic transformation (/
´
 interfaces 

may move in both directions at temperature changes) temperature – stress cycles may recover 

the shape of crystal (component). 

Self-accommodation martensite: individual martensitic crystals (martensitic variants) create 

aggregates that enable minimising of the shape deformation. 

 Questions addressing the content covered 

1. What are the basic characteristics of diffusionless transformations? 

2. What is the shape deformation? 

3. How do you define an orientation relationship? What orientation relationships between 

austenite and martensite in iron-based alloys do you know? 

4. Explain the term "deformation with an invariant plane". 

5. What morphologies of martensite in iron based alloys do you know? 

6. What are the temperatures essential for martensitic transformations? 

7. Describe the effects of the transformation and re-orientation superelasticity. 

8. What is the principle of the shape memory effect? 

9. What are the criteria for occurrence of the two way memory effect? 

10. What is the self-accommodation martensite? 
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Exercises 

Example 1  

Draw a diagram illustrating the Bain model of homogeneous deformation during martensitic 

transformation of FCC  BCC. Assuming that a = 3.56 Å , a = 2.86 Å and the ratio of c/a parameters 

is equal to 1.1, calculate the maximum movements of atoms during the martensitic transformation. 

Solution: 

Diagram for the Bain homogeneous deformation: 

 

                                    austenite                                                                               martensite 

Movements of atoms can be calculated as follows: 

c/a = 1.1    a = 2.86 Å                  c = 3.15 Å 

𝑎𝛾

√2
 = 2.52 Å  

Movement of atoms along vertical direction: 3.56 – 3.15 = 0.41 Å  

Movement of atoms along horizontal direction: 2.86 – 2.52 = 0.34 Å 

The maximum movement of atoms is defined by vector addition: 0.53 Å . 
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