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Preface 
 

Study support to the subject Physical Metallurgy is primarily intended for students of 

combined studies. In the combined form of study, there is a much smaller proportion of direct 

contact teaching, which makes this study much more difficult for students. Our study support 

to the subject Physical metallurgy can help you to eliminate this handicap to a certain extent. 

These is not a new textbook, there are enough of those. The study support is a replacement, if 

possible, for the lack of direct instruction and interlink to a subsequent study of professional 

literature itself, whether it be textbooks or other publications. 

When writing this support I have tried to maximize the clarity of the text. This cannot 

be achieved, at least in my opinion, without some simplification, reduction and sometimes 

even inaccuracy. If someone feels that simplification is too much, I apologize in advance. But 

my experiences in teaching this subject led me to a result which is just this text. 

Despite careful checking of the text, it is almost certain that I did not avoid errors, 

typing errors, etc., maybe even factual mistakes. I will be most grateful, if you notify me 

about them so I can gradually correct them. You can notify me either directly during 

classwork or by email to jaroslav.sojka@vsb.cz .  

I wish all of you who will use this study support, a lot of strength in your study! 

 

 

 

 

          The Author 

 

mailto:jaroslav.sojka@vsb.cz


Study Guide  

 3 

Study Guide 

This study support is divided into four major units - chapters. Most of them are divided into 

smaller units - subchapters. For each subchapter, an indicative study time required is given. 

This is only a rough guide of how long it would take you to manage the whole unit. So do 

not take it as something that is clearly given and do not hesitate to get to study even if you 

have less.  

How would you work with the study support?  

Basic learning units (subchapters) are numbered as 2.1, 2.2, 3.1, etc.  

 Try to read the entire subchapter.  

 Try to draw most of the figures free hand, especially charts and diagrams.  

 If the subchapter contains solved examples, solve them so that you rewrite them and 

perform calculations themselves.  

 Then have a look at the summary of terms and try to answer whether these concepts 

say something to you.  

 You can also look at the questions and try to formulate answers to at least some of 

them.  

If you succeed right at first, it would be excellent, but rather we do not suppose it. 

So read it once more, make notes about what you consider to be essential. Again, draw 

pictures, diagrams, etc. Read again the summary of the terms and try to describe them in 

your own words. Then you can start to answer the questions. The questions are worded 

simply so that you find the answer in the text. Answer briefly in writing!!! Answers to 

questions are in the Key, which is always at the end of major chapters. Compare the answers 

in the Key with your answers. Answers in the Key and your answers may not match exactly, 

but they should have the same meaning. 

Then you can proceed to the tasks to be solved (if any). 

If you have any problems with which you need help, please contact teachers whose 

names you will learn during the introductory lecture, either directly or via email. You 

can always approach the guarantor of the study subject, Prof Jaroslav Sojka, on the e-

mail address jaroslav.sojka@vsb.cz or Tel. No. 596994245. 

A semester thesis will be written within this study subject. You will get detailed guidance on 

its writing, scope, etc. in the course of the contact teaching, most likely during the second 

lecture, along with a recommendation on what literature sources are useful, etc.  

mailto:jaroslav.sojka@vsb.cz


Table of Contents  

 4 

 

 

 

Table of Contents 
 

 

1. Introduction          5 

2. Solid State Diffusion         6 

2.1. Basic characteristics and classification      6 

2.2. Interstitial diffusion         11 

2.3. Substitutional diffusion – Auto diffusion, diffusion of admixtures-impurities 35 

2.4. Mutual diffusion of substitutionally disolved elements – interdiffusion  44 

2.5. Up-hill diffusion         52 

3.   Strengthening mechanisms in metallic materials     58 

3.1. Strengthening by plastic deformation       59 

3.2. Grain boundary strengthening        64 

3.3. Precipitation strengthening        69 

3.4. Solid solution strengthening        77 

4.   Segregation processes in metallic materials      82 

4.1. Division of segregation processes in metallic materials – macrosegregation, dendritic 

segregation           82 

4.2 Microsegregation at the grain boundaries      88 

4.3 Microsegregation at the grain boundaries in the ternary and polycomp. systems 97 

4.4 Microsegregation at interphases boundaries      104 

 

 

 



Introduction 

 5 

1. INTRODUCTION  

  

 
Study time: I do not mention - this is a familiarization chapter only 

 

 
 

Objective    After reading this chapter, you should: 

  Get a taste of embarking on a detailed study of all the other chapters. 

 

The study subject Physical Metallurgy typically includes a variety of fields of metallurgy, 

which are relatively closely bound to physics, in particular to solid state physics. Since 

Physics of the Solid State is a separate study subject of the follow-up master's degree in 

Advanced Technical Materials, we agreed that the subject Physical Metallurgy will include 

only those sections that are not contained in other subjects, i.e. they are included neither in the 

subject Physics of the Solid State, nor Phase Transitions. 

The subject Physical Metallurgy therefore focuses on four areas, namely: 

 solid state diffusion, 

 strengthening mechanisms in metallic materials, 

 segregation phenomena in metallic materials, and  

 recrystallization of metallic materials and related processes. 

Each of these areas you have come across with in the bachelor's degree, especially in the 

following courses: Introduction to the Study of Materials, Materials Science, Structure and 

Properties of Solids, and partly in the course Fundamentals of Heat Treatment. Physical 

Metallurgy will therefore build on these courses and often you will have to refresh relevant 

passages that you have studied in the bachelor's degree, not to linger unnecessarily at 

something you have already completed and be able to pursue something new.  

So let’s begin! 
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2. SOLID STATE DIFFUSION 

  

 2.1. Basic characteristics and classification 

 

 
Study time: 0.5 hours 

 

 
 

Objective    After reading this part, you should be able to: 

  Define the concept of solid state diffusion and explain how diffusion takes 

place. 

 Describe some types of classification of diffusion processes. 

 Explain how solid state diffusion is related to the vibrational motion of atoms. 

 

 

 
Presentation  

 

 From the history of diffusion as a scientific discipline 

Our ancestors, of course, were aware of the existence of diffusion processes a very, very long 

time ago. But the scientific basis was given to diffusion by Thomas Graham (British, 1805-

1860), Adolf Eugen Fick (German, 1829-1901) and William Chandler Roberts-Austen 

(British, 1843-1902). Partly also the work of Albert Einstein and Svante August Arrhenius 

(Sweden, 1859-1927) dealt with diffusion. 

Thomas Graham was a chemist and the first to formulate the theory of diffusion in gaseous 

substances. Adolf Eugen Fick was born into a family of German civil engineer. He was 

interested in mathematics from his childhood and wished to study it. On the advice of older 

brothers, however, he became a doctor like them. But love of mathematics stayed with him 

his whole life and it was he who formulated the laws that you know as Fick's laws of 

diffusion. As far as the solid state diffusion is concerned, W. C. Roberts-Austen was probably 

the first man who described some of its laws and he is the same man, after whom the solid 

solution of carbon in gamma iron has been named, i.e. austenite. Roberts-Austen devoted 

himself, inter alia, to the study of diffusion of precious metals in metals having a relatively 

low melting point, such as lead, tin and bismuth and formulated one of the first findings that 

concern diffusion in solids. Also Albert Einstein, who formulated the theory of random jumps 

and the associated mean square displacement (we will pay a brief attention to it below), dealt 

with solid state diffusion. S. A. Arrhenius formulated his famous equation, which was named 
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after him and which characterizes the dependence of thermally activated processes on the 

temperature. You will certainly recall that you have come across the term of Arrhenius 

equation. 

 

 Definition of solid state diffusion 

Diffusion ranks among the so-called transport phenomena. Diffusion can be defined as the 

transport of particles of matter, mostly of atoms or ions, where the driving force for diffusion 

is to reduce Gibbs free energy, or reduce the chemical potential of components of the system. 

Diffusion is therefore governed by the laws of thermodynamics. Most often, diffusion takes 

place so that particles of matter move (diffuse) from the locations of higher concentration to 

areas of lower concentration of a certain element. Thus, diffusion reduces the concentration 

gradient, but also, and more importantly Gibbs free energy, or chemical potential of the 

components of the system decreases. This conventional type of diffusion, in which the 

concentration gradient is reduced, is known in English as "down-hill diffusion". In certain 

cases, which will be discussed later, diffusion may take place so that the differences in 

concentration increase. It is essential, however, that despite higher concentration differences 

decrease in Gibbs free energy occurs in this type diffusion, or atoms in this case also move 

from the areas with a high value of chemical potential to regions with a low value of the 

chemical potential. This less conventional type of diffusion, which leads to the increase of the 

concentration gradient, has become known in English as "up-hill diffusion". 

Diffusion generally stops when the value of chemical potential of the individual components 

at any point in the system is the same, i.e. the system is in equilibrium state. 

 

 Some division in the area of diffusion 

Solid state diffusion takes place through the so-called elementary jumps of atoms. You should 

already know how these elementary jumps can take place (or if you forgot, refresh your 

knowledge by reading the study support for the course Structure and Properties of Solids).  

Just to repeat, we note that the mechanisms of jumps of atoms during diffusion can be divided 

into: 

 individual mechanisms, which include an elementary jump in interstitial diffusion 

and vacancy diffusion of substitutional atoms; 

 group mechanisms, which include e.g. direct exchange of atoms or cyclic exchange 

of atoms during diffusion of substitutional atoms. 



Solid State Diffusion 

 8 

In terms of atoms and components undergoing diffusion, the diffusion can be divided into: 

 Auto-diffusion (sometimes also called self-diffusion), during which only atoms of  

the basic component of the system diffuse (strictly speaking auto-diffusion can occur 

only in single-component systems); 

 heterodiffusion, during which atoms of various components diffuse, mostly atoms of 

dissolved elements.  

In case of heterodiffusion, we further distinguish whether diffusion of atoms of such solutes 

takes place that are present only in very low concentrations, i.e. their diffusion does not 

significantly affect the diffusion of atoms of the basic component. The second case is the one, 

where the concentration of atoms of dissolved components is higher and their diffusion causes 

also the diffusion of atoms of the basic component.  

 With what the solid state diffusion is associated? 

Solid state diffusion is associated with the vibrational motion of atoms. You may remember 

that we said that even in the solid state the atoms are not at rest, but they perform vibrational 

motion around the nodal points in a crystal lattice. The vibrational motion is characterized by 

two variables, namely the frequency and amplitude of the vibrational motion. In the case of 

the vibrational motion of atoms it applies that the frequency of vibrational motion is 

essentially independent of temperature, and is about 10
13

 s
-1

 (atoms vibrate extremely quickly; 

they accomplish 10 billion of vibrations per second!). With increasing temperature, however, 

the amplitude of the vibrational motion of atoms increases, and the mean vibrational energy 

of the atom is proportional to 

Tk..3 ,          Eq. 2.1 

where k  is Boltzmann constant; 

 T is absolute temperature. 

Vibrational motion of the atoms leads to collisions between neighbouring atoms and thus the 

transfer of kinetic energy. As a result of the collision, some atoms may achieve energy 

sufficient to perform an elemental jump (e.g. in the case of interstitial atom, this will be the 

jump from one interstitial position to another interstitial position - neighbouring). Yet it is 

necessary that the adjacent atoms are in a position (outside their equilibrium position) to allow 

such a jump. And this is actually the elementary “step” in the solid state diffusion. The 

situation is schematically illustrated in Figure 2.1, which shows the jump of interstitial atom 

from one interstitial position to an adjacent interstitial position. In this elementary jump atom 

must overcome an energy barrier marked Gm in the picture. Energy needed to jump is the 

vibrational energy plus energy derived from collisions with neighbouring atoms. 
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Fig. 2.1 Schematic representation of the elementary jump during the diffusion of interstitial 

atom and the corresponding energy barrier 

 

 

 
Summary of terms from 2.1 

 

After studying this part, following terms should be clear to you: 

 Solid state diffusion, the driving force for diffusion 

 Down-hill diffusion, up-hill diffusion 

 Individual mechanisms of jumps, group mechanisms of jumps 

 Auto-diffusion, heterodiffusion 

 Vibrational motion of the atoms, the frequency and amplitude of vibrations of 

atoms 

 

 
Questions to 2.1 

1. Define diffusion. 

2. What is the driving force for diffusion? 

3. What does the term down-hill diffusion mean? 

4. What does the term up-hill diffusion mean? 

5. When does the solid state diffusion stop? 

6. Which mechanisms are among the so-called individual mechanisms of diffusion? 

7. Which mechanisms are among the so-called collective mechanisms of diffusion? 

8. What does the term auto diffusion mean? 
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9. What does the term heterodiffusion mean? 

10. Which process is necessary in order to allow the solid state diffusion? 

11. What characterizes the vibrational motion? 

12. What is the frequency of vibrational motion of atoms in solid state? 

13. Does the frequency of vibrational motion of atoms depend on temperature? 

14. Does the amplitude of vibrational motion of atoms depend on temperature? 
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2.2. Interstitial diffusion 

 

 
Study time: 6 hours 

 

 
 

Objective    After reading this subchapter, you should be able to: 

  Derive the first and second Fick's law for the case of interstitial diffusion.  

 Characterize the effect of temperature on the coefficient of diffusion of 

interstitial elements. 

 

 Solve selected tasks of unsteady state diffusion important in metallurgical 

practice. 

 

 

 
Presentation  

 

First, we will deal with interstitial diffusion or diffusion of interstitially dissolved atoms. The 

reason is very simple; interstitial diffusion is slightly easier than substitution diffusion, and so 

let’s start with it. 

 Derivation of Fick’s First Law  

You have probably already come across Fick's first law and so you know that it is the law that 

describes the steady state diffusion, i.e. diffusion, in which the concentration does not change 

over time and remains constant. (In practice, this is a highly unusual example, but it is easier 

to solve and so we mention it as the first one.) You also know that the Fick's first law connects 

the diffusion flux with diffusion coefficient and concentration gradient. So far you have not 

derived this law, but in the master's degree now we have to make reparation for it. If you 

derive something, you should remember it better and longer, and you should be able to look at 

the problem in a broader context. 

We will therefore derive Fick's first law for the case of diffusion of interstitial atoms. For 

further simplification, we assume that diffusion takes place in a simple cubic lattice. In this 

type of lattice, the only interstitial positions are the centres of elementary cells. The situation 

is schematically illustrated in Figure 2.2. 
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Fig. 2.2 Schematic picture to derive Fick's first law for interstitial diffusion 

 

In the picture, we consider two planes 1 and 2, in which interstitial atoms are located marked 

by black dots like B atoms. The number of interstitial atoms in plane 1 per unit area is greater 

than the number of interstitial atoms per unit area in the plane 2. 

Let the number of interstitial atoms per unit area of plane 1 be n1 at./m
2 

and let the number of 

interstitial atoms per unit area of plane 2 be n2 at./m
2
. 

We therefore assume that: 

21 nn            Eq. 2.2 

Now we express the diffusion flux of B atoms from plane 1 to plane 2 and vice versa. (To 

repeat - the diffusion flux is the amount of substance - such as the number of atoms that 

passes through unit area per unit time. It can be expressed e.g. as the number of at./m
2
.s, but 

also otherwise.) 

Diffusion flux of interstitial atoms from plane 1 to plane 2 can be expressed as: 

1.
6

1
nJ BB 


,          Eq. 2.3 

where  B is the jump frequency of B atoms from one interstitial position to another 

interstitial position (s
-1

). 

cB1-cB2cB1-cB2
1.

6

1
nJ BB 


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But still we have to explain where did that the sixth in Equation 2.3 emerge. If an atom in 

interstitial position is in plane 1, it has a total of six adjacent interstitial positions into which it 

can jump. But only one of these six positions is in plane 2, in which we are interested. Other 4 

interstitial positions rest in plane 1, and one position is in the plane to the left of plane 1. If we 

are interested in diffuse flux from plane 1 to plane 2, the equation must contain one sixth. 

Quite analogously, we can express the diffusion flux of B atoms from plane 2 to plane 1:  

2.
6

1
nJ BB 


         Eq. 2.4 

Real diffusive flux of B atoms from plane 1 to plane 2 is given by the difference of the above 

diffusion fluxes, and can be expressed by the following equation: 

).(
6

1
21 nnJ BB           Eq. 2.5 

Given that in the area of diffusion it is preferable to express the quantity of diffusing atoms 

using concentrations, we convert values n1 and n2 to the concentration of B component atoms 

(at/m
3
). 

It is true that the concentration of B component atoms in plane 1 is:  


1

1

n
cB            Eq. 2.6 

Completely analogous equation applies to the concentration of B component atoms in plane 2: 


2

2

n
cB            Eq. 2.7 

If we modify Equation 2.5 so that it features the concentration of B component, we get the 

following equation:  

).(.
6

1
21 BBBB ccJ           Eq. 2.8 

The difference in concentrations of B atoms in plane 1 and plane 2 can be expressed 

according to Figure 2.2 as follows:  

x

c
cc B
BB




 )( 21         Eq. 2.9 

(Note: This follows from the fact that the partial derivative of the concentration of B 

component with respect to distance x is actually the slope of the line, which illustrates the 

dependence of the concentration of B component on the distance x in Figure 2.2. There must 

be a minus sign in front of the expression, because the concentration difference is positive, 

while the partial derivative of the concentration of B component with respect to distance is 

negative.) 

 

If we introduce Equation 2.9 into Equation 2.8, we get the following relationship: 
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x

c
J B

BB



 2.

6

1
         Eq. 2.10 

 

Expression 
2.

6

1
B  implies the diffusion coefficient of B component, we can therefore 

write: 

2.
6

1
BBD           Eq. 2.11 

and after modification we get the resulting form from Equation 2.10 as follows: 

x

c
DJ B
BB



 ,         Eq. 2.12 

This is already the form of Fick's first law, which you have come across and which applies to 

the steady state diffusion running in one direction (in the direction of X axis).  

Fick's first law therefore says that during the steady state diffusion, the diffusion flux of 

a diffusing component is directly proportional to the diffusion coefficient of the diffusing 

component and its concentration gradient. The minus sign before the expression is not 

a mistake. The diffusion flux of atoms from plane 1 to plane 2 is positive, the diffusion 

coefficient is also a positive value, but the partial derivative of concentration with respect to 

distance is a negative number, because the concentration versus distance is a downward 

sloping straight line in Figure 2.2. To get a positive number as the diffuse flow, the expression 

must be preceded by a minus sign. 

From Equation 2.12, the diffusion coefficient is sometimes defined as the amount of 

substance (e.g. atoms) which passes through unit area per unit time at unit 

concentration gradient of the diffusing component. The unit of diffusion coefficient is 

perhaps somewhat surprising – it is m
2
/s. This can be easily determined from Equation 

2.12. 

In practice, even in the steady state diffusion the situation is more complicated because the 

diffusion coefficient may depend e.g. on the concentration of the diffusing component.  For 

example, the coefficient of diffusion of carbon in gamma iron increases with increasing 

carbon concentration, because there is some increase in the lattice parameter of gamma iron 

and carbon atoms then "travel more easily".  

 

Solved example 2.1: 

Problem: 

Consider Fe - C system at temperature of 1000°C. The diffusion coefficient of carbon in 

gamma iron at this temperature is DC=2.5·10
-11

 m
2
/s; gamma iron lattice parameter a = 
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0.37 nm. Determine the frequency of carbon atom jumps from one interstitial position to 

another at a given temperature.  

Solution: 

We start from Equation 2.11, but it has to be modified for the gamma iron lattice, which has 

a face centred cubic (fcc) arrangement. Atom in the interstitial position here has a total of 12 

neighbouring positions to which it can jump, yet only 4 out of 12 will lie in the direction of 

diffusion. The modified Equation 2.11 for fcc lattice will therefore be as follows: 

2.
3

1
CCD   

Given that the lattice parameter is mentioned, we must ascertain its relationship with the 

distance between neighbouring planes for interstitial position in the fcc lattice. If you look at 

relevant pictures in the study support Introduction to the Study of Materials, you will find that 

the distance between the planes in which interstitial positions exist is equal to a/2, where a is 

the lattice parameter.  

Therefore, it applies that: 

2

a
 . 

After substituting it into the equation above we get: 

2
2

.
12

1

4
.

3

1
a

a
D CCC   

If we substitute the numerical values into the equation after modification, the frequency of 

jumps of carbon atoms is as follows: 

9

29

11

2
102.2

)1037.0(

105.212.12











a

DC
C  s

-1
. 

Conclusion:  

At a temperature of 1000°C, the frequency of jumps of carbon atoms during interstitial 

diffusion in gamma iron is about 2.2·10
9
 s

-1
, which means that roughly every ten 

thousandth thermal oscillation leads to the jump of atom from one interstitial position to 

another.  

 Random jumps and the mean square displacement 

Diffusing atoms are poor devils in a way, because they work awfully hard during diffusion. 

They in fact can’t move solely in the direction of the concentration gradient. They gain the 

energy to jump by collisions with neighbouring atoms and sufficient energy may come from 

an atom which does not induce the jump in the direction of the diffusion gradient, but in a 

random direction. Jumps in the direction of a concentration gradient will be slightly 

predominant, but besides that atoms perform a huge amount of jumps in diffusion in other 
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directions, as well. This aspect of diffusion was dealt with, among others, by Albert Einstein, 

who formulated the thesis that most jumps in diffusion is essentially random. 

Figure 2.3 shows how the random motion of atoms in diffusion may look like. 

 

RR

 

Fig. 2.3 Schematic representation of random jumps in diffusive motion of atoms 

 

Figure 2.3 shows the overall movement of the atom in diffusion as a sequence of random 

jumps and the diffusion path R, which is defined as the distance between the initial and final 

position of the atom.  

According to the theory of random jumps, the diffusion path R is: 

nR  ,          Eq. 2.13 

where  is the length of the elementary jump, and 

 n is the number of elementary jumps. 

If jump frequency is  and time is t, then it applies for n that: 

tn .           Eq. 2.14 

Thus we can write for R: 

tR .           Eq. 2.15 

If we substitute the expression for  from Equation 2.12 into Equation 2.15, we get: 

tDtDR

tDt
D

R

BB

B
B

..4,2

..6.
.6

2







       Eq. 2.16 

Equation 2.16 is sometimes written in the form as follows: 
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tDR B.2            Eq. 2.17 

The variable R
2 

is referred to as the mean square displacement that is proportional to the 

diffusion coefficient and the time over which diffusion takes place. 

Equations 2.16 or 2.17 are very useful because they provide us with a simple method to 

determine the approximate distance at which a particular element can diffuse over 

time t.  

 

Solved example 2.2 

Problem: 

Consider the task of example 2.1 and determine the diffusion path R and the total distance 

travelled by the carbon atom in 1 second. 

Solution: 

For the diffusion path R, it applies that: 

tDR C .4,2  

After substitution: 

611 10121.105,24,2  R  m 

The total distance travelled by a carbon atom, is the product of the length of elementary jump 

 and the number of jumps n. We can therefore write: 

5.0
2

2
103701.102... 99   tn  m 

(Note: The length of the elementary jump of carbon atom in the gamma iron lattice is half the 

length of the wall diagonal of elementary cube.) 

Conclusion:  

The mean diffusion path of carbon atom at a temperature of 1000°C and time of 1 second is 

equal to approximately 12 m. But the total distance travelled by a carbon atom is much 

longer and is about half a metre.  

That is the difference. So perhaps you agree that atoms work hard during diffusion. 

 Effect of temperature on diffusion 

From a probability viewpoint, the fraction of atoms having the energy required to overcome 

the energy barrier for diffusion, can be expressed as: 

)exp(
RT

Gm
           Eq. 2.18 

where  Gm is the free activation enthalpy needed to diffusion, 

 R is the universal gas constant, and 

 T is absolute temperature. 
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The frequency of successful jumps will then be the product of the frequency of thermal 

vibrations of atoms  and the above mentioned expression. Thus we can write: 








 

RT

Gm
B exp.         Eq. 2.19 

The free activation enthalpy can be expressed using the enthalpy and entropy as: 

mmm STHG  .         Eq. 2.20 

If we substitute equations 2.19 and 2.20 into the Equation 2.11 for calculation of the diffusion 

coefficient, we get: 








 
















 


RT

H

R

S
D mm

BB exp.exp..
6

1
.

6

1 22      Eq. 2.21 

The member in square brackets is often referred to as the frequency or pre-exponential factor 

DB0 and when introduced, the relationship 2.21 can be converted to a much simpler form 

featuring only the activation enthalpy of diffusion H or activation energy of diffusion Q: 








 








 


RT

Q
D

RT

H
DD m

B
m

BB exp.exp. 00      Eq. 2.22 

Equation 2.22 means that the diffusion coefficient increases exponentially with the 

increasing temperature, i.e. at higher temperatures the diffusion takes place more easily 

and atoms can diffuse over a longer distance during the same time.  

 

Now let us consider how we could find the activation energy of diffusion for a particular 

element or possibly the value of the frequency factor. To do this, we need to know the values 

of diffusion coefficients at different temperatures.  

Equation 2.22 can be converted to a linear, i.e. straight line dependency, by logarithmic 

calculation: 

TR

Q
DD m
BB

1
.lnln 0


         Eq. 2.23 

This equation is actually the equation of a line  

xkqy . ,          Eq. 2.24 

where  BDy ln  and 
T

x
1

 . 

Thus we represent the dependency of lnDB on 1/T. If we obtain values k and q using 

regression analysis, we can calculate both the activation energy of diffusion and pre-

exponential factor from them as follows: 

q
BB eDDq  00ln         Eq. 2.25 

RkQ
R

Q
k m

m .


        Eq. 2.26 
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Solved example 2.3 

Problem: 

For temperature dependence of the diffusion of carbon in alpha iron, following values of the 

carbon diffusion coefficient DC depending on temperature were obtained: 

Temperature 
(°C) 

C diffusion 
coefficient 
(cm2.s-1) 

300 4.3986E-09 

400 6.0418E-08 

500 4.2132E-07 

600 1.8829E-06 

700 6.1859E-06 

800 1.6281E-05 

Determine the pre-exponential factor D0 and activation energy QC for diffusion of carbon in 

alpha iron. 

Solution: 

We know from the above that for finding the values of the activation energy of diffusion and 

pre-exponential factor we must convert the temperature dependence of the diffusion 

coefficient to the linear dependence in the coordinates of 1/T versus lnDC. This is best done in  

EXCEL. 

Temperature 
(°C) 

Temperature 
(K) D (cm2.s-1) 1/T (K-1) lnD 

300 573 4.3986E-09 0.001745 -19.242 

400 673 6.0418E-08 0.001486 -16.622 

500 773 4.2132E-07 0.001294 -14.6799 

600 873 1.8829E-06 0.001145 -13.1827 

700 973 6.1859E-06 0.001028 -11.9932 

800 1073 1.6281E-05 0.000932 -11.0255 
 

We construct the graph 1/T versus lnD and run regression analysis. 

The graph is shown below: 

y = -10103x - 1,6094

R
2
 = 1

-25

-20

-15

-10

-5

0

0 0,0005 0,001 0,0015 0,002

1/T

ln
 D

C

 

Slope of the line k = -10103; quotient (segment on Y axis) =-1.6094 



Solid State Diffusion 

 20 

We determine the pre-exponential factor D0 from Equation 2.25: 

2.06094.1

0  eeD q

C  cm
2
.s

-1
. 

We determine the activation energy for diffusion of carbon in alpha iron from Equation 2.26: 

83996314810103  .)(.RkQm  J.mol
-1

. 

Conclusion:  

For the specified values, the pre-exponential factor for diffusion of carbon in alpha iron 

is 0.2 cm
2
.s

-1
 and the activation energy for diffusion of carbon in alpha iron is 

83996 J.mol
-1

. 

 Derivation of Fick’s Second Law 

You have probably come across Fick's second law, too and know that it relates to such 

diffusion processes where the concentration in each location varies with time. These 

processes are, in practical terms, much more common, so we can say that Fick's second law is 

more important than the first one. 

Again, we will derive this law for interstitial diffusion that takes place in one direction and it 

will be the usual downhill diffusion. 

Schematic picture that will help us in derivation of Fick's second law is shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Schematic picture to derive Fick's second law 
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Consider a material in which there is a diffusion of interstitial B element along the X axis. 

The dependence of the concentration of B element on the distance is shown in Figure 2.4a, 

while Figure 2.4b shows the dependence of diffusion flux of B element on the distance. 

Consider two planes (1 and 2) in the material, a short time distance away (x) and define an 

area with size A in both planes.  

The number of B atoms that pass to plane 1 from the left in a short period of time t can be 

expressed by the following equation: 

tAJatB ..11           Eq. 2.27 

where J1 is the diffusion flux in plane 1, 

 A is an area defined in plane 1, 

 t is the examined short period of time. 

By analogy, the number of B atoms that pass from plane 2 to the right in a short period of 

time t can be expressed as: 

tAJatB ..22           Eq. 2.28 

At time t, the number of atoms between planes 1 and 2 changes by: 

tAJJ .).( 21           Eq. 2.29 

This change can be expressed using the change in the concentration of B element as follows:  

tAJJxAcB  .).(.. 21          Eq. 2.30 

where cB is the change in the concentration of B element between planes 1 and 2. 

 

It can be derived from Figure 2.4 that the difference of diffusion fluxes J1 and J2 is equal to: 

x

J
xJJ



 .)( 21           Eq. 2.31 

because 
x

J




 is the slope of the line that expresses the dependence of diffusion flux on the 

distance x. 

 

After substituting Equation 2.31 into Equation 2.30 we obtain equation: 

x

J

t

cB









          Eq. 2.32 

and for time t converging to zero we obtain the equation: 

x

J

t

cB









          Eq. 2.33 

If we substitute the expression corresponding to the Fick's first law (Eq. 2.12) into Equation 

2.33 for the diffusion flux, we obtain the equation: 
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





















x

c
D

xt

c B
B

B         Eq. 2.34 

This equation already expresses the Fick's second law provided that the diffusion coefficient 

depends on the concentration. 

If the diffusion coefficient is independent of concentration, Fick's second law is mentioned in 

the form as follows: 

2

2

x

c
D

t

c B
B

B









         Eq. 2.35 

Equation 2.35 is the most common expression of Fick's second law for diffusion taking 

place in one direction. This relationship can be very simply interpreted so that the 

change in concentration of a diffusing element with time is directly proportional to the 

diffusion coefficient and the second derivative of concentration with respect to distance. 

Equation 2.35 is a differential equation whose solution can be very difficult. Consequently, 

we will tackle some specific diffusion problems, which are based on Fick's second law and 

which are very important in metallurgy.  

 Constant source diffusion – e.g. carburization of steel  

One of the most important problems of unsteady state diffusion is the diffusion from 

a constant diffusion source. Typical example might be the saturation of steel surface with e.g. 

carbon, but in general it might be the saturation of surface of any metal material with any 

element. This process is shown schematically in Figure 2.5. 

 

 

Fig. 2.5 Schematic representation of diffusion from a constant source – carburization of steel 

 

The problem can be seen as follows: At time t = 0, the carbon content at any point below the 

steel surface, i.e., for x> 0, is equal to c0. There is a constant carbon concentration cs on the 
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steel surface at all times, i.e. over arbitrary time interval (this concentration is given by e.g. 

composition of the gaseous atmosphere during steel cementation). 

The concentration of carbon in subsurface layers will change just as shown by curves in 

Figure 2.5 for three different diffusion times, with t1 < t2 < t3.  

This concentration c (x, t), which is a function of depth below the surface x and diffusion time 

t can be calculated from the equation: 















tD

x
erf

cc

ctxc

S .2
1

),(

0

0        Eq. 2.36 

where c0 is the initial concentration of the corresponding element in the material, 

cS is the surface concentration of the element (given by intensity of the diffusion 

source) and is a constant, 

 x is the depth under surface, 

 D is the diffusion coefficient for the element in question, 

 t is the time of diffusion. 

Equation 2.36 is the solution to Fick's second law for this particular case. In the equation, 

there is a special function that is marked erf. Erf is the so called error function, which also 

appears in the Gaussian (normal) distribution.  

If we want to calculate the distribution function for a standard normal distribution, we arrive 

at the relation: 

 Eq. 2.37 

 

In the case of a general normal distribution, following relation applies to the calculation of the 

distribution function: 

 Eq. 2.38 

Error functions occur in both equations. 

The course of error function is shown in Figure 2.6. 
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Fig. 2.6 The course of error function 

 

The error function is tabulated, a simple table is given below (Table 2.1). 

 

Tab. 2.1 Values for error function erf (x) for selected values of the variable x. 

x erf(x) 

0.01 0.011283 

0.02 0.022565 

0.03 0.033841 

0.04 0.045111 

0.05 0.056372 

0.06 0.067622 

0.07 0.078858 

0.08 0.090078 

0.09 0.101281 

0.1 0.112463 

0.15 0.167996 

0.2 0.222703 

0.25 0.276326 

0.3 0.328627 

0.35 0.379382 

0.4 0.428392 

0.45 0.475482 

0.5 0.5205 

0.55 0.563323 

0.6 0.603856 

0.65 0.642029 

0.7 0.677801 
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0.75 0.711155 

0.8 0.742101 

0.85 0.770668 

0.9 0.796908 

0.95 0.820891 

1 0.842701 

1.1 0.880205 

1.5 0.966105 

2 0.995322 

3 0.999978 

4 1 

5 1 

 

Error function values can be also determined by a series expansion: 

Eq. 2.39 

So that is about the error function. 

 

A special situation occurs for concentration, which is the arithmetic mean of concentrations c0 

and cS. 

For this case, the left side of Equation 2.36 is as follows: 

2

12

.2

2),(

0

00

0

0
0

0

0 















cc

ccc

cc

c
cc

cc

ctxc

S

S

S

S

S

    Eq. 2.40 

By substituting into Equation 2.36 we obtain: 

2

1

.2.2
1

2

1




















tD

x
erf

tD

x
erf      Eq. 2.41 

If the error function of variable x is equal to 0.5, then (see Tab. 2.1) variable x is also equal to 

approximately 0.5. Thus it is true that: 

2

1
)

2

1
( erf           Eq. 2.42 

The it also applies that: 

tDx
tD

x
.

2

1

.2
         Eq. 2.43 

For concentration, which is the arithmetic mean of concentrations c0 and cS, a very simple 

relationship applies between the depth to which an element diffuses, diffusion coefficient and 

diffusion time.  
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Solved example 2.4 

Problem: 

Steel containing 0.2% carbon is carburized in a gas atmosphere having a carbon potential of 

0.9%. Carburizing is performed at 920°C, at which the diffusion coefficient of carbon in 

gamma iron equals to 1.13076·10
-7

 cm
2
.s

-1
. Determine graphically the dependence of carbon 

concentration at a depth below the surface for periods of cementation lasting 2, 4, 8 and 20 

hours. Determine how much time is needed for the carbon concentration below the surface at 

a depth of 0.5 mm to become equal to 0.55%.  

Solution: 

The solution is preferable to perform in EXCEL. For the calculation, it will be useful to 

consider the distance in cm and time in seconds. 

The key is to solve the modified Equation 2.36  



















tD

x
erfccctxc S

.2
1).(),( 00  

and subsequently obtain the relation between x and c(x, t). 

We can do this gradually, as shown in the example of table from EXCEL. 

Depth (mm) 
Depth 
(cm) 

Temperature 
(°C) 

Temperature 
(K) DC() 

tD

x

.2

 

2 hours 

tD

x

.2

 

4 hours 

tD

x

.2

 

8 hours 

tD

x

.2

 

20 hours 

0 0 920 1193 1.13076E-07 0 0 0 0 

0.01 0.001 920 1193 1.13076E-07 0.0175234 0.0123909 0.0087617 0.0055414 

0.02 0.002 920 1193 1.13076E-07 0.0350469 0.0247819 0.0175234 0.0110828 

0.03 0.003 920 1193 1.13076E-07 0.0525703 0.0371728 0.0262851 0.0166242 

0.04 0.004 920 1193 1.13076E-07 0.0700937 0.0495637 0.0350469 0.0221656 

0.05 0.005 920 1193 1.13076E-07 0.0876171 0.0619547 0.0438086 0.027707 

0.06 0.006 920 1193 1.13076E-07 0.1051406 0.0743456 0.0525703 0.0332484 

0.07 0.007 920 1193 1.13076E-07 0.122664 0.0867365 0.061332 0.0387898 

0.08 0.008 920 1193 1.13076E-07 0.1401874 0.0991275 0.0700937 0.0443312 

0.09 0.009 920 1193 1.13076E-07 0.1577108 0.1115184 0.0788554 0.0498725 

0.1 0.01 920 1193 1.13076E-07 0.1752343 0.1239093 0.0876171 0.0554139 

0.12 0.012 920 1193 1.13076E-07 0.2102811 0.1486912 0.1051406 0.0664967 

0.14 0.014 920 1193 1.13076E-07 0.245328 0.1734731 0.122664 0.0775795 

0.16 0.016 920 1193 1.13076E-07 0.2803748 0.1982549 0.1401874 0.0886623 

0.18 0.018 920 1193 1.13076E-07 0.3154217 0.2230368 0.1577108 0.0997451 

0.2 0.02 920 1193 1.13076E-07 0.3504685 0.2478187 0.1752343 0.1108279 

 

We enter the depth below the surface x in mm, then in cm, the temperature in °C and in K, 

and the coefficient of diffusion of carbon in gamma iron. Then we can calculate the value of 

the member 
tD

x

.2

 for each period of cementation. 
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Then we can calculate the error function of argument 
tD

x

.2

, preferably by a series expansion,  

according to Equation 2.39 up to the member z
17

. This is shown by another table from 

EXCEL. 

erf(2h) erf(4h) erf(8h) erf(20h) 

0 0 0 0 

0.01977606 0.0139845 0.0098888 0.0062543 

0.039539978 0.0279647 0.0197761 0.0125082 

0.059279637 0.0419363 0.0296603 0.0187614 

0.078982963 0.0558951 0.03954 0.0250134 

0.098637948 0.0698367 0.0494136 0.0312639 

0.118232674 0.083757 0.0592796 0.0375125 

0.137755333 0.0976516 0.0691366 0.0437587 

0.157194249 0.1115164 0.078983 0.0500023 

0.176537898 0.1253471 0.0888172 0.0562428 

0.19577493 0.1391397 0.0986379 0.0624798 

0.233884725 0.166594 0.1182327 0.0749421 

0.271437039 0.1938467 0.1377553 0.087386 

0.308349255 0.220866 0.1571942 0.0998085 

0.34454328 0.2476213 0.1765379 0.1122066 

0.379946031 0.2740824 0.1957749 0.1245773 

 

Finally, we can calculate the appropriate concentrations of carbon depending on the depth 

below the surface and  time of cementation and construct a graph. This is shown in the third 

table and the corresponding graphical representation.  

aC cC c(x,t) 2h c(x,t) 4h c(x,t) 8h c(x,t) 20h 

0.9 0.2 0.9 0.9 0.9 0.9 

0.9 0.2 0.8861568 0.8902108 0.8930778 0.895622 

0.9 0.2 0.872322 0.8804247 0.8861568 0.8912442 

0.9 0.2 0.8585043 0.8706446 0.8792378 0.886867 

0.9 0.2 0.8447119 0.8608734 0.872322 0.8824906 

0.9 0.2 0.8309534 0.8511143 0.8654105 0.8781153 

0.9 0.2 0.8172371 0.8413701 0.8585043 0.8737413 

0.9 0.2 0.8035713 0.8316439 0.8516044 0.8693689 

0.9 0.2 0.789964 0.8219386 0.8447119 0.8649984 

0.9 0.2 0.7764235 0.812257 0.8378279 0.8606301 

0.9 0.2 0.7629575 0.8026022 0.8309534 0.8562641 

0.9 0.2 0.7362807 0.7833842 0.8172371 0.8475405 

0.9 0.2 0.7099941 0.7643073 0.8035713 0.8388298 

0.9 0.2 0.6841555 0.7453938 0.789964 0.8301341 

0.9 0.2 0.6588197 0.7266651 0.7764235 0.8214554 

0.9 0.2 0.6340378 0.7081423 0.7629575 0.8127959 
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This graph represents essentially the solution of the first, the most difficult part of the task. 

 

The second part of the task, i.e. to determine how much time is needed for the carbon 

concentration below the surface at a depth of 0.5 mm to become equal to 0.55%, is very easy. 

The concentration of 0.55% of carbon is the arithmetic mean of the initial and surface 

concentration. The calculation is then performed according to Equation 2.43: 

hourss
D

x
ttDx 14.622109

1013076.1

05.0
.

7

22







 

Certain control of accuracy can be done in the graphical dependence of concentration on the 

depth below the surface. 

Conclusion: 

The dependence of concentration of carbon on the depth below the surface is graphically 

represented for specified periods of cementation; time needed for the carbon 

concentration to be 0.55% in the depth of 0.5 mm below the surface is approximately 

6.14 hours. 

 

 Constant source diffusion – e.g. decarburization of steel 

Very similar diffusion problem is the case where the concentration of a certain element is 

higher inside the material and due to certain effects (e.g. composition of the surrounding 

atmosphere) the decrease in concentration of the element concerned takes place in the 

subsurface layers.  The surface concentration may be zero, but not necessarily. This depends 

on the composition of the ambient atmosphere. A typical example of this problem is 

decarburization of steel. In this case, the solution of Fick's second law leads to equation: 
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













tD

x
erf

cc

ctxc

S

S

.2

),(

0

        Eq. 2.44 

where c0 is the initial concentration of the respective element within the material, 

cS is the surface concentration of an element (depends mostly on the composition of 

the ambient atmosphere) and is a constant; at that it must be true that c0 > cS. 

 x is the depth below surface, 

 D is the diffusion coefficient of the respective element, 

 t is the time of diffusion. 

For concentration, which is the arithmetic mean of concentrations c0 and cS again there is 

a simple relation between the time of diffusion, depth below the surface and diffusion 

coefficient: 

tDx .           Eq. 2.45 

 

Example of the dependence of carbon concentration in the subsurface layers in steel 

containing 0.95% of carbon and is annealed at 780°C in an atmosphere having a carbon 

potential of 0.4% is shown in Figure 2.7. 

 

Fig. 2.7 Example of decarburization of steel during annealing at temperatures of 780°C 

 

The figure shows that even after a relatively long time of annealing (15 hours), the depth of 

decarburized layer does not exceed 1 mm. The method for obtaining the graphical dependence 

in Figure 2.7 is in principle identical to the procedure as described for the solved example 2.4. 
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Solved example 2.5 

Problem: 

You perform austenitization of steel at 900°C. Steel contains 0.7% of carbon. What is the 

maximum time of austenitization for the carbon content not to drop below 0.6% at depth of 

0.1 mm below the surface at 0.4% carbon potential of the atmosphere.  

Temperature dependence of the diffusion coefficient of carbon in austenite is given by the 

equation: 

 cm
2
.s

-1
 

 

Solution: 

First, we can calculate the diffusion coefficient of carbon at a temperature of 900°C by simply 

substituting into the above equation. We obtain: 

cm
2
.s

-1
 

 

The task itself can be solved using Equation 2.44, i.e.: 















tD

x
erf

cc

ctxc

S

S

.2

),(

0

 

Since we know all the members on the left side, we can quantify the left side as follows: 

3

2

4070

4060

0











..

..),(

S

S

cc

ctxc
 

Thus we can write that 

3

2

.2










tD

x
erf  

Error function is thus equal to 2/3 and we find the value in table 2.1 corresponding to the 

value of the argument, which is a member 
tD

x

.2
. 

From Table 2.1, we can roughly estimate that the value of argument is about 0.68 (In Table 

2.1 we look for a value in the left column corresponding to the value in the right).  

Thus we can write that: 

680
2

.
.

tD

x
 

And we solve this equation for the unknown t, because we have to determine time. After 

modification, we get: 

min10613
10814.836.1

01.0

.)68.02( 82

2

2

2










s
D

x
t  
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Conclusion: 

Maximum time of steel austenitization in the given atmosphere for the carbon content 

not to drop below 0.6% at a depth of 0.1 mm below the surface is about 10 minutes. 

 Compensating the content of an element that periodically varies  

This is a task which again has a wide application in metallurgy and is tied up with the 

dendritic segregation in metallic materials. As a result of dendritic segregation, the content of 

many elements in metallic materials varies and this variation can be simply regarded as a 

periodic. The difference between the maximum and minimum content of elements can be 

quite substantial, and it has a negative impact on both the structure of the material and its 

properties. Therefore, we sometimes try to reduce such concentration differences by e.g. 

homogenization annealing. It will be of interest to us, then, what will be the variation in the 

content of an element after a certain annealing time.  

Figure 2.8 can help us to illustrate this task. 

 

Fig. 2.8 Illustrative picture to the diffusion task that addresses the compensation of content of 

an element, which periodically varies 

 

The picture shows the following quantities: 

C  the mean concentration of an element 

0 the initial amplitude of content of an element 

l the distance between mean concentrations of an element (half-period) 

The full line indicates the course of the concentration at time t = 0, while the dashed line 

indicates the course of the concentration after a certain annealing time.  

Again, it is the problem of unsteady state diffusion, which is solved using Fick's second law. 
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At time t = 0, the course of concentration of a certain element can be expressed using the 

following equation:  

l

x
CxC

.
sin.)( 0


         Eq. 2.46 

 

The course of concentration at time t can be expressed by the equation: 

)exp(.
.

sin.),( 0





t

l

x
ctxc         Eq. 2.47 

where  is a time constant for which: 

BD

l

.
2

2


            Eq. 2.48 

where DB is the diffusion coefficient of an element. 

 

In some cases, we do not need to know the exact course of concentration, but it is enough for 

us to know the amplitude of concentration that will exist after a certain annealing time.  

This amplitude (t) may be determined from the equation: 

)exp(.)( 0



t

t           Eq. 2.49 

Equation 2.49 is sometimes presented in a slightly different form - as: 

)exp(
)(

0 

 tt
          Eq. 2.50 

 

Solved example 2.6 

Problem: 

In steel containing 1.0% of Cr, variations occur due to the dendritic segregation in the range 

between 0.6 and 1.4% of Cr. Calculate how long steel must be treated by homogenizing 

annealing at 1200°C so that the chromium content varies only in the range between 0.8 to 

1.2%. The diffusion coefficient of chromium at a temperature of 1200°C is 7.2·10
-11

 cm
2
.s

-1
. 

Distance l (half the length of the period of Cr content variation) is 20 m. 

Solution: 

This example can be solved by using Equation 2.50, which we will solve for the unknown t. 

The initial Cr content amplitude is 0 = (1.4-0.6)/2=0.4. The amplitude, which we are to arrive 

is (t) = (1.2-0.8)/2=0.2.  

Next, we must calculate a parameter  according to the Equation 2.48: 

s
D

l

B

5653
102.7

002.0

. 112

2

2

2







  

Note that due to the diffusion coefficient unit, also other lengths must be given in cm.  
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Take a log of the Equation 2.50 to get at the following equation: 



 tt










0

)(
ln  

From it, time t is: 

hours
t

t 113918505653
40

20
5653

0

.).ln(.
.

.
ln.

)(
ln. 






















  

Conclusion: 

To reduce variations in the content of chromium in the steel to 0.8-1.2%, i.e. with the 

variation amplitude of 0.2%, we must anneal the steel at 1200°C for about 1.1 hours.   

 

 

 
Summary of terms from 2.2 

 

After studying this part, following terms should be clear to you: 

 Steady state diffusion and unsteady state diffusion 

 Fick’s first and second laws 

 Random jumps; mean squared displacement 

 Constant source diffusion 

 Error function 
 

 
Questions to 2.2 

15. How can a diffusion flux be characterized? 

16. Explain concisely Fick's first law (without using the equation – in words). 

17. Which members are hidden in the pre-exponential (frequency) member in the 

expression of dependence of the diffusion coefficient on temperature? 

18. How to verbally express Fick's second law? 

19. What do we mean by unsteady state diffusion? 

20. In which characteristics of the Gaussian distribution we encounter the error function? 

 

Task to solve 2.1 

Problem: 

You perform cementation of steel containing 0.2% of carbon in the carburizing atmosphere 

with a carbon potential of 1.0% at 900°C. Calculate the concentration of carbon at a depth of 

1 mm below the surface for cementation times of 10, 20, and 40 hours. Temperature 

dependence of the diffusion coefficient of carbon in gamma iron is given by the equation: 
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Results:  

The concentration of carbon at a depth of 1 mm below the surface is as follows: 

Cementation time of 10 hours 0.37% 

Cementation time of 20 hours 0.50% 

Cementation time of 40 hours 0.62%. 
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2.3. Substitutional diffusion – auto diffusion, diffusion of admixtures - 

impurities 

 

 
Time to study: 2 hours 

 

 
 

Objective    After reading this part, you should be able to: 

  Explain the principle of auto diffusion. 

 Explain the effect of vacancies on the course of substitutional diffusion. 

 Characterize the diffusion from an inconstant source. 

 Solve typical tasks of unsteady state diffusion of substitutional atoms. 

 

 

 
Presentation  

 Auto diffusion 

In the previous chapter 2.2 we focused on the diffusion of interstitial atoms, because its 

description is easier. But it must be said that almost everything that we derived for interstitial 

diffusion is also true for the diffusion of substitutional atoms. Basically, the only difference 

we discover when we deal with the effects of temperature for the case of substitutional 

diffusion (for the case of interstitial diffusion, we derived the equations 2.19 to 2.22). 

The difference is explained on the case of auto diffusion, which is the diffusion of own atoms 

(strictly speaking in a single-component system). It can be detected by radioisotopes of the 

respective element.  

Let A* be a radioactive isotope of element A. 

For the diffusion coefficient of a radioisotope it is true, that: 

2* .
6

1
 AA DD          Eq. 2.51 

Also in the case of substitutional diffusion, an equation analogous to Equation 2.19 will apply 

to the frequency of successful jumps, i.e. that frequency is proportional to the frequency of 

thermal vibrations of atoms  and probability that atoms obtain activation energy necessary to 

overcome the energy barrier, i.e.: 
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)exp(.
RT

Gm
           Eq. 2.52 

 

In the case of diffusion of substitutional atoms we must, however, take into account the effect 

of the presence of vacancies, because we already know that the vacancy mechanism is the 

least energy-consuming mechanism of diffusion of substitutional atoms. In other words, we 

must take into account the probability that a nodal point adjacent to the atom, which should 

diffuse, is unoccupied – a vacancy. The situation is schematically illustrated in Figure 2.9. 

 

Fig. 2.9 Schematic picture illustrating the influence of vacancies on the diffusion of 

substitutional atoms 

The probability that neighbouring location is vacant is given by the product of VXb. , 

where  b is the number of nearest neighbouring nodal points, 

 XV is the mole fraction of vacancies. 

The equilibrium mole fraction of vacancies is given by the relation: 

)exp(
RT

G
X Vequil
V


         Eq. 2.53 

where GV is free activation enthalpy associated with the formation of vacancies (J.mol
-1

). 

For the frequency of successful jumps in the diffusion of substitutional atoms (auto diffusion) 

then applies that: 








 








 


RT

GG
b

RT

G
Xb Vmm
VB exp..exp..      Eq. 2.54 

The essential difference between this Equation 2.54 and Equation 2.19 is that besides the own 

energy barrier for jump, Equation 2.54 moreover features free activation enthalpy associated 

with the formation of vacancies. Considering that both quantities, Gm, and GV, can be 
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expressed using the enthalpy H and entropy S, we can express the relationship for 

determining the coefficient for auto diffusion as follows:  








 



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
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






 
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




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


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
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Q
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D
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HH

R
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bDD
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A

VmVm
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exp.exp.

exp.exp...
6

1

00

2* 

  Eq. 2.55 

The meaning of individual members in the equation should be obvious. 

The main difference between Equation 2.55 and the analogous equation for diffusion of 

interstitial atoms is again that in Equation 2.55 the activation energy of auto diffusion QAD 

contains the own energy barrier for jump, as well as the energy required to form a vacancy.  

The following example shows how big the effect of temperature on the course of the 

substitutional diffusion is.  

 

Solved example 2.7 

Problem: 

Consider auto diffusion of copper at temperatures of 800°C and 20°C. At 800°C, the 

coefficient of copper auto diffusion is D*Cu = 5·10
-9

 mm
2
/s, while at 20°C it is D*Cu = 5·10

-34
 

mm
2
/s. The distance of planes between which jumps take place is  = 0.25 nm. Determine the 

frequency of successful jumps  for both temperatures and the diffusion path for the diffusion 

time of 1 hour. 

Solution: 

For solution, we will use Equation 2.51. 

For a temperature of 800°C, it applies that: 

5

12

9

2

2 105
100625.0

105.6.6
.

6

1














D
D  s

-1
. 

So at this temperature it is approximately true that every ten millionth thermal vibration leads 

to the jump of atom from one node to another position, adjacent. From the other side - half a 

million of successful jumps takes place in one second. 

For the diffusion path at 800°C, it applies that: 

39 1043600105.   tDx  mm, i.e. 4 m. 

At 20°C, it applies to the frequency of successful jumps that: 
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12120

12

34

2
1010

100625.0

106.6 









 s

D


 year

-1 
 

The result can be interpreted in such a way that one jump occurs in just about every trillion 

years. The diffusion path is not worth counting.... 

Conclusion: 

We will not give any numbers, we only state that the substitutional diffusion (auto diffusion) 

is strongly affected by temperature. 

 

 Determination of coefficient of auto diffusion 

How can we determine the coefficient of auto diffusion? Also in this case we need 

a radioactive isotope of the respective element, but we also need a device capable of 

measuring the concentration of radioactive isotopes, and otherwise we will utilize the 

diffusion task for transient diffusion, i.e. task, which is based on Fick's second law. Both 

Fick's laws apply equally to the interstitial diffusion and substitutional diffusion. Imagine that 

a thin layer of radioactive isotope is put between two cylinders made from common isotope of 

the respective element. Couple diffusively all three parts (so that diffusion can proceed 

between the individual parts) and anneal at elevated temperature. At different distances from 

the thin layer of a radioactive isotope we then measure the concentration of the radioactive 

isotope in the cylinders manufactured from conventional isotope. Schematic layout and 

graphical dependence of concentration of the radioactive isotope after a certain time of 

annealing for gold is shown in Figure 2.10.  

The solution to Fick's second law for this diffusion problem leads to the following equation: 

)
.*

exp(.
.*.

.
)
.*

exp(.
.*.

),(
tD

x

tD

th

tD

x

tD

M
txc A

4242

22







;  Eq. 2.56 

 

where c(x,t) is the concentration of a radioactive isotope at a distance x from the boundary 

line between the thin layer of a radioactive isotope and cylinder made from 

a conventional isotope for the annealing time t; concentration in this case is 

mostly expressed as density, e.g., in kg/m
3
, 

MA is a radioactive isotope mass per unit area, 

 is a radioactive isotope density, 

th. is the thickness of the radioactive isotope layer. 
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This problem is sometimes called the diffusion from an inconstant source, because during 

annealing, i.e. during the diffusion, the maximum concentration decreases (the layer is 

“consumed”). This is schematically illustrated in Figure 2.11 for different annealing times. 

 

Fig. 2.10 Schematic picture to determine the auto diffusion coefficient of gold 

 

 

Fig 2.11 Schematic representation of the concentration of radioactive isotope for different 

annealing times 
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If a thin layer of a radioactive isotope is applied to the surface of only one cylinder, the 

equation is modified as follows:  

)
.*

exp(.
.*.

.
)
.*

exp(.
.*.

),(
tD

x

tD

th

tD

x

tD

M
txc A

44

22







  Eq. 2.57 

(in denominator, 2 is not at the first member). 

 

The course of concentration for a layer applied on one side only and different annealing times 

is shown in Figure 2.12. 

 

Fig. 2.12 Schematic representation of the concentration of radioactive isotope for different 

annealing times at unilaterally applied layer 

Equation  2.57 (or 2.56) can be logarithmed, which leads to a simplified equation: 

tD

x
txc

.*.4
),(ln

2

         Eq. 2.58 

So there is a linear relationship between ln c(x,t) and x
2
. If we obtain experimental values of 

concentration for different distances x at the same time t, we can use regression analysis to 

obtain the equation of the line in the following form:  

.. qxky   

We can deduce from Equation 2.58 that the slope of the line will be equal to: 

tk
D

tD
k

..4

1
*

..4

1
        Eq. 2.59 
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Equation 2.59 is the resulting equation by which we can determine the coefficient of auto 

diffusion of a particular element. 

 

Important information: 

All that we have said so far for the case of auto diffusion is true also for substitutional 

diffusion of admixtures or impurities, i.e. such admixtures which are present in the 

material only in small amounts, generally not exceeding 1%. In these cases, it is believed 

that diffusion of admixtures does not cause diffusion of the basic element of the system. 

 

Solved example 2.8 

Problem: 

Cover the cylinder made of pure nickel by a foil made of pure gold with thickness of 5 m 

and anneal at 1000°C for 10 hours. The density of gold is Au = 19.02 g/cm
-3

. After annealing, 

measure the concentration of gold in the nickel cylinder at different distances from the 

boundary line to obtain the following results: 

 

Distance from 

boundary line 

(m) 

Gold concentration 

g/cm
3
 

1 8.88 

10 4.47 

20 0.556 

30 0.0173 

On the basis of these results, determine the coefficient of diffusion of gold in nickel. 

Solution: 

We start from Equation 2.58, i.e. we get the relationship between the natural logarithm of  

concentration and square of the distance x
2
. Task will be best solved in EXCEL. 

We can get the following table of values: 

Distance x (cm) x2 
Concentration c 

(g/cm3) ln c 

0.0001 0.00000001 8.88 2.183802 

0..001 0.000001 4.47 1.497388 

0.002 0.000004 0.556 -0.58699 

0.003 0.000009 0.0173 -4.05705 

We will construct graph ln(c)= f(x
2
) as shown and determine the equation of the regression 

line. 
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y = -694252x + 2,1909

R
2
 = 1

-5

-4

-3

-2

-1

0
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2

3

0 0,000002 0,000004 0,000006 0,000008 0,00001

x2

ln
 c

 

Slope of the line is -694252. 

This value is substituted into Equation 2.59 

  11100.1
3600106942524

1

..4

1 



tk

D
NiAu  cm

2
/s 

Conclusion: 

It works out for entered values that coefficient of diffusion of gold in nickel at 

a temperature of 1000°C is equal to 1.0·10
-11

 cm
2
/s. 

 

 

 
Summary of terms from 2.3 

 

After studying this part, following terms should be clear to you: 

 Auto diffusion; substitutional diffusion of impurities. 

 Diffusion from an inconstant source. 
 

 
Questions to 2.3 

21. Why auto diffusion takes place? 

22. How auto diffusion of a certain element can be studied? 

23. What should be taken into account when determining the frequency of successful 

jumps in the case of substitutional diffusion? 

24. What does the activation energy of diffusion express in the case of substitutional 

diffusion?  

25. What does the term diffusion from an inconstant source mean? 

26. Among which characteristics we obtain the linear dependence for determining the 

coefficient of auto diffusion or diffusion of impurities? 
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Task to solve 2.2 

Problem: 

Cover the cylinder made of pure iron by foil made of pure manganese with thickness of 5 m 

and anneal at 1300°C for 20 hours. After annealing, measure the concentration of manganese 

in the iron cylinder at different distances from the boundary line to obtain the following 

results: 

Distance from 

boundary line  

(m) 

Manganese 

concentration 

g/cm
3
 

1 0.48 

10 0.47 

50 0.29 

100 0.06 

On the basis of these results, determine the coefficient of diffusion of manganese in gamma 

iron at 1300°C. 

Result:  

(DMn)Fe = 1.67·10
-10

 cm
2
/s. 
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2.4. Mutual diffusion of substitutionally dissolved elements - interdiffusion  

 

 
Time to study: 3 hours 

 

 
 

Objective    After reading this part, you should be able to: 

  Explain the principle of interdiffusion. 

 Describe the Kirkendall effect. 

 Explain the basic principles of interdiffusion. 

 Derive the speed of motion of the boundary layer during interdiffusion. 

 Describe Darken’s equation. 

 

 
Presentation  

 Kirkendall effect 

In the previous part we dealt with auto diffusion and we said that mentioned laws were valid 

also for diffusion of substitutionally dissolved impurities, if their concentration was low, i.e. 

not resulting in any significant diffusion of atoms of the basic element of the system. 

Now let's focus on the case, when the concentration of an impurity is higher and the diffusion 

of its atoms must necessarily cause diffusion of another element, mostly the basic element of 

the system. This type of diffusion is called interdiffusion.  

The first information about one of the phenomena related to the interdiffusion was made 

public by Ernest Kirkendall in 1947, when he performed his famous experiment. Principle of 

the experiment is shown schematically in Figure 2.13. 
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Fig 2.13 Scheme of experiment to Kirkendall effect 

What Mr. Kirkendall, American physicist did? He take a specimen of -brass, which 

contained 30% of zinc and 70% of copper, and wrapped it with thin molybdenum wires 

serving as “measuring points” to determine the size of the brass specimen. Pure copper was 

then electrolytically applied on this specimen. Then he annealed the resulting specimen at 

elevated temperatures. After prolonged annealing, he cut the specimen and measured the 

distance of molybdenum wires, i.e. “measuring points”. And he found that the wires were 

closer together after annealing. This should mean that the brass specimen diminished during 

annealing, while the part originally formed by copper increased. So Kirkendall arrived at an 

important and true conclusion that during the mutual diffusion of two substitutionally 

dissolved elements (in this case copper and zinc) the original boundary line is displaced. And 

why this happens? This stems from the fact that diffusion rates of the elements mentioned are 

not the same, usually one element diffuses faster and the other slower. In the case of 

Kirkendall’s experiment, zinc diffuses faster. This means that zinc leaves the brass specimen 

faster. Copper, which in turn diffuses into the brass, diffuses slowly and is not able to replace 

all of dwindling zinc, which results, among others, in a displacement of the original boundary 

line. It is true that the part of material, which contains faster diffusing element at the  

beginning, diminishes. 

But we will now try to derive it. 

 Derivation of the basic characteristics of interdiffusion, Darken’s 

equation 

The scheme to derive interdiffusion patterns is shown in Figure 2.14. Let us assume that we 

have two specimen. The first specimen is a single-component system consisting of element A. 

The second specimen is a single-component system consisting of element B. There is 

unlimited solubility in the solid state among the elements A and B. We combine both 

specimens together, anneal at elevated temperature and will explore how the concentration of 
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elements A and B changes near the boundary line after annealing. The concentration of 

element A at the boundary line at the beginning (before annealing) is shown in blue, while the 

concentration of element A after some time of annealing is shown by the black curve. The 

concentration of element B after the same time of annealing is shown by the red curve. 

Assuming that diffusion coefficients of both elements are not identical and that it is true that 

the coefficient of diffusion of element A is greater than the coefficient of diffusion of element 

B. 

Thus we can write: DA≠DB; DA>DB 

Consider now that during annealing, there is a diffusion flux of atoms of component A to 

specimen B and vice versa diffusive flux of atoms of component B to specimen A. 

This can be written by following equations: 

x

c
DJ A
AA






 and 

x

c
DJ B
BB






      Eq. 2.60a,b 

 

 

Fig. 2.14 Scheme to derive interdiffusion patterns 
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Furthermore, assume that total number of atoms per unit volume c0 is constant and is equal to 

the sum of cA + cB. 

Under this assumption, we can express the gradient of concentration of component B with 

respect to distance as follows: 

x
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x

cc

x

c AAB




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


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

 )( 0        Eq. 2.61 

So it is true that concentration gradients of the two components are identical, but with 

an opposite orientation. 

Then we can modify Equation 2.60a,b to the form: 
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      Eq. 2.62a,b 

When assuming the vacancy mechanism of diffusion, it can be considered that the difference 

between diffusion fluxes JA  and JB is compensated by the flow of vacancies from specimen B 

to specimen A. 

The flow of vacancies can be written as: 
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Rate of change in vacancy concentration over time can be expressed by the equation: 

x

J

t

c VV









         Eq. 2.64 

This equation is analogous to equation 2.33, with which we met in the derivation of Fick's 

second law. 

As a result of the flow of atoms and vacancies across the boundary, the boundary line is 

displaced downstream of vacancies, i.e. from B to A. This means that specimen A decreases, 

while specimen B increases. But how can we imagine this? This is schematically shown in 

Figure 2.15.  
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Fig. 2.15 Schematic representation of the boundary line motion during interdiffusion  

Let us imagine that linear defects – dislocations are present in both specimens A and B (let us 

consider edge dislocations). The diffusion flux of atoms prevails in the direction of AB. 

The atoms of element A, which diffuse into specimen B, can join here the existing 

dislocations until a dislocation ceases to exist by emergence of a “standard” atomic plane. On 

the other hand, the diffusion flux of vacancies prevails in the direction of BA. Vacancies 

that move from specimen B to specimen A can also join dislocations in specimen A near the 

boundary line, which will lead to disappearance of crystallographic planes. The boundary 

between specimens A and B is therefore gradually displaced in the direction from B to A, i.e. 

specimen A decreases and specimen B increases. 

The rate v, at which the boundary moves, can be applied to the flow of vacancies across the 

boundary line. Let us consider area A and a short time interval t. 

Plane A is passed through by 0ctvA ...  atoms in time t. 

The number of vacancies which passes through area A over the same period of time is 

tAJV .. .  

Given that the number of atoms and number of vacancies must be equal, we can write: 

tAJctvA V  ..... 0         Eq. 2.65 

Hence it follows that the flow of vacancies is equal to: 

0cvJV .           Eq. 2.66 

When considering the validity of Equation 2.63, we get: 
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x
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 )(. 0        Eq. 2.67 

Instead of concentration, we may reflect the mole fractions of components A and B, i.e. XA 

and XB. It will apply: 

0
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AAA  .         Eq. 2.68 

By considering the mole fractions of the components A and B, we can modify Equation 2.67 

to the form: 
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Applying a rule for the derivation of the product of 
x

cXA



 ).( 0 , we get: 
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Then you can already express the rate of motion of the boundary line in interdiffusion by 

means of the following equation: 

x

X
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BA






)(
)(         Eq. 2.71 

This equation is therefore the mathematical notation for the motion of boundary line in 

interdiffusion, i.e. notation for what Kirkendall observed.  

What does Equation 2.71 say? 

1. The greater is the difference between the values of diffusion coefficients of the two 

components, the greater is the rate of motion of the boundary line in interdiffusion.  

2. Rate of motion of the boundary line is proportional to the gradient of the mole fraction 

of the component with respect to distance. Gradient of the mole fraction changes 

during the annealing process (decreases). This means that the rate of motion of the 

boundary line is highest at the beginning and then gradually decreases. 

In some cases, we can come across another phenomenon in the interdiffusion, the so-called 

diffusion porosity. This occurs near the boundary on the side of the element with higher 

diffusion coefficient (in our model case, element A). Atoms of this element diffuse faster to 

specimen B, and if they are not replaced by atoms of element B and if the boundary line does 

not move sufficiently quickly, small pores emerge in specimen A having the size of up to 

tenths of micrometres.  
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In 1948, Lawrence S. Darken derived the coefficient of mutual diffusion of two substitutional 

elements, the interdiffusion coefficient D
~

. This coefficient is expressed by Darken’s 

equation:  

ABBA DXDXD ..
~

         Eq. 2.72 

Note that if the concentration (or the mole fraction in this equation) of component B is very 

low, the interdiffusion coefficient is equal to the diffusion coefficient of component B, and i.e. 

the following applies: 

BDD 
~

          Eq. 2.73 

In the case of interdiffusion, both Fick's laws apply, but the interdiffusion coefficient is 

considered in them, i.e. the corresponding equations of Fick’s laws have following forms for 

the case of interdiffusion:  

Fick’s first law: 

x

c
DJ Ai

A



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~

         Eq. 2.74 

Fick’s second law: 
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         Eq. 2.75 

 

 
Summary of terms from 2.4 

 

After studying this part, following terms should be clear to you: 

 Interdiffusion 

 Kirkendall effect 

 Motion of boundary line in interdiffusion 

 Diffusion porosity 

 Interdiffusion coefficient 

 Darken’s equation 
 

 

 
Questions to 2.4 

27. With what materials did Kirkendall work in his experiment? 

28. What role do molybdenum wires play in the Kirkendall’s experiment? 



Solid State Diffusion 

 51 

29. Why does the motion of boundary line between two different materials occur in 

interdiffusion? 

30. What determines the rate of motion of the boundary line in interdiffusion? 

31. On the side of which material we can expect the emergence of the so called diffusion 

porosity during interdiffusion? 
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2.5. Up-hill diffusion 

 

 
Time to study: 0.5 hours 

 

 
 

Objective    After reading this part, you should be able to: 

  Explain the principle of up-hill diffusion. 

 Explain the relationship of the chemical potential and course of up-hill 

diffusion. 

 
 

 
Presentation  

 Special case of diffusion 

In section 2.1 we have seen that the driving force for diffusion is the reduction in Gibbs 

energy, i.e. for equilibration of the chemical potential of the system components. In most 

cases, the differences between the concentrations of elements in different parts of the material 

are reduced in diffusion. (It was a classical diffusion, the downhill diffusion). However, we 

said that there is also another kind of diffusion, where in the course of diffusion the 

concentration differences in some elements may increase. This is the so called up-hill 

diffusion. Now we will explain it with an example. 

Let us consider two steels that differ only little in the carbon content. In steel A the carbon 

content is somewhat higher than in steel B. But they significantly differ in the silicon content. 

Steel A contains a high content of silicon, while the silicon content in settle B is very low. We 

realize that silicon increases very significantly the activity of carbon in the steel. 

We combine both steels and will anneal them at temperature below Ac1, i.e. so that the two 

steels are in the ferrite stability region, and examine how the carbon concentration will change 

near the boundary line. Situation is schematically illustrated in Figure 2.16. 

In part (a) of the picture, the solid line shows the carbon concentration at the beginning of  

annealing. Situation after annealing time t is shown in part (b). In “normal” diffusion, we 

would expect that the concentration difference in the carbon content will become equilibrated 

close to the boundary line. This is indicated by a blue dashed line. In fact, the course of the 

carbon content will be such as characterized by a solid black line. This means that in the 

vicinity of the boundary line, a significant decrease of carbon content in steel A will occur 

and vice versa, there will be an increase in carbon content in steel B. Why will this happen? 
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Fig. 2.16 Scheme to explain the up-hill diffusion 

It is related to the presence of other element, in this case silicon, which has a significant 

influence on the activity of the carbon. It is true that with increased silicon content, 

a significant growth in the activity of carbon takes place. And you know that the activity of an 

element is associated with its chemical potential  by equation:  

ii aTR ln..          Eq. 2.76 

where i is the chemical potential of element i, 

 ai is the activity of element i. 

In steel A, there is a much higher activity of carbon due to higher silicon content and the 

carbon here has much higher chemical potential. In contrast, the carbon activity in steel B is 

much lower due to the low content of silicon and therefore the chemical potential of carbon is 

lower as well. Thus, diffusion takes place so as to equilibrate the chemical potential of carbon 

in the vicinity of the boundary line, though it will mean that the carbon content will 

significantly increase in steel B in the vicinity of the boundary line. The course of the 

chemical potential of carbon near the boundary line is shown in Figure 2.16c.  

 

 

A-více Si         B- málo SiA-více Si         B- málo SiA - more Si   B - less Si   
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Summary of terms from 2.5 

 

After studying this part, following terms should be clear to you: 

 Up-hill diffusion 
 

 

 
Questions to 2.5 

32. What is the course of up-hill diffusion related to in most cases? 

33. What practical impact the up-hill diffusion may have in the case of joining various steels? 
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Key to the solution – answers to questions to Chapter 2 

A1 Diffusion is the transfer of particles of matter, mostly of atoms or ions, which leads to 

higher thermodynamic stability of the system. 

A2 The driving force for diffusion is the reduction of the free enthalpy of the system. 

A3 Downhill diffusion proceeds so that equilibration of concentration differences in various 

locations of the system takes place during it.  

A4 Up-hill diffusion proceeds so that concentration differences increase during it. 

A5 Diffusion stops when the value of chemical potential of the components at any point in 

the system is the same. 

A6 The individual diffusion mechanisms include e.g. elementary jump in interstitial 

diffusion, or vacancy mechanism of substitutional diffusion. 

A7 Among the collective diffusion mechanisms, there is e.g. the direct exchange or cyclic 

exchange in substitutional diffusion. 

A8 Auto diffusion means the motion of atoms of the basic element of the system.  

A9 Heterodiffusion means the diffusion of impurity elements. 

A10 The processes necessary for solid state diffusion are thermal vibrations of atoms. 

A11 The vibrational motion is characterized by frequency and amplitude of vibrations. 

A12 The frequency of vibrational motion of atoms in solid state is approximately 10
13 

s
-1

. 

A13 In principle, the frequency of vibrational motion of atoms does not depend on 

temperature. 

A14 The amplitude of vibrational motion of atoms depends on the temperature and increases 

with the increasing temperature. 

A15 The diffusion flux is such amount of a substance (e.g. atoms), which passes through unit 

area per unit time. 

A16 The diffusion flux is directly proportional to the diffusion coefficient and concentration 

gradient of a diffusing element. 

A17 In pre-exponential member, inter alia, the frequency of vibrational motion of atoms and 

entropy associated with the energy barrier that must be overcome in the elementary jump 

are hidden. 

A18 Fick's second law says that the change in concentration of the diffusing element in time is 

proportional to its diffusion coefficient and the second derivative of concentration with 

respect to distance. 

A19 Unsteady state diffusion means such case when concentration of diffusing elements 

changes over time.  

A20 We have encountered the error function in the distribution function of the Gaussian 

distribution. 

A21 Auto diffusion takes place because it equilibrates the energy fluctuations of thermal 

vibrations of atoms. 

A22 Auto diffusion of an element can be studied using its radioactive isotope. 

A23 Account should be taken of the presence of vacancies. 

A24 The activation energy in substitutional diffusion involves the own energy barrier of the 

elementary jump and activation energy for the formation of vacancies.  

A25 Diffusion from inconstant source represents a diffusion, in which the diffusion source – 

diffusing element – is consumed, i.e. its concentration gradually decreases. 

A26 The linear relationship is obtained between the square of the distance from the diffuse 

source and concentration of the diffusing element. 

A27 Kirkendall worked with alpha brass and electrolytically applied copper. 

A28 Molybdenum wires served as “gauges”, measuring points by means of which the 

thickness of alpha brass specimen was measured.  
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A29 The displacement of the boundary line occurs due to the different values of diffusion 

coefficients of diffusing elements. 

A30 Rate of motion of the boundary line depends on the difference in diffusion coefficients of 

diffusing elements and on the gradient of mole fraction of the component with respect to 

distance.  

A31 Diffusion porosity can be expected on the side of the element that diffuses faster. 

A32 Up-hill diffusion mostly relates to the different active concentration of a diffusing 

element in different locations. 

A33 Up-hill diffusion in the case of steel joints may mean e.g. local carburization or local 

decarburization, which may be reflected in different mechanical properties. 
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3. STRENGTHENING MECHANISMS IN METALLIC 

MATERIALS  

 

In the case of construction materials, there are efforts to improve their mechanical properties, 

especially to increase the strength and toughness of materials. The increase in toughness of 

materials is very problematic. In contrast, there are several ways leading to increased strength, 

i.e. the reinforcement of materials. With regard to the focus of our study program, we will 

give our attention to strengthening of metallic materials. At the outset, we must mention one 

correction. When we write about strengthening, we would say, probably, that the quantity we 

want to increase is the ultimate strength. But it is not the case. Given the fact that metallic 

materials may only be stressed in operation in the elastic deformation region, the key quantity 

we want to increase in strengthening is the yield point or yield strength. We already know that 

the yield point is the maximum stress prior to which the material will deform elastically. 

Above the yield point, plastic deformation occurs, which means that dislocations move in the 

metallic materials and new dislocations are formed. To increase the yield point of the 

material, we have to make the movement of dislocations more difficult so that they will begin 

to move only when exposed to higher stresses. So we try to have obstacles in the material that 

will hinder the movement of dislocations. 

There are several ways to increase the yield point of metallic materials, i.e. to strengthen them 

The most commonly used mechanisms include: 

 strengthening by plastic deformation 

 grain boundary strengthening 

 solid solution strengthening 

 precipitation strengthening 

Subsequently, we will give at least basic information to individual mechanisms. 
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3.1. Strengthening by plastic deformation 

 

 
Time to study: 1 hour 

 

 
 

Objective After reading this part, you should be able to: 

  Explain how metallic materials can be strengthened by plastic deformation. 
  

 Specify what determines the degree of strengthening by plastic deformation.  

 

 Describe the main advantages and disadvantages of strengthening by plastic 

deformation. 

 
 

 
Presentation 

 

It is as though the strengthening of metallic materials by plastic deformation contains a certain 

contradiction in terms. We wrote that the strengthening meant to restrict the movement of 

dislocations and now we are writing about plastic deformation. More specifically, we can 

write that it is a plastic deformation that precedes the normal use of the material. We will try 

to show you how this strengthening occurs through the example of a tensile test. Imagine that 

we perform a tensile testing of metallic material and record the working diagram. Example is 

shown in Figure 3.1. 

 

Fig. 3.1 Diagram of tensile test to explain the strengthening by plastic deformation 
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But the tensile test will not be performed until the test bar breaks, but we will disburden it in 

the region of uniform plastic deformation (approximately at point D in Figure 3.1). It can be 

seen from Figure 3.1 that in its initial state the material had a yield strength marked y0. If we 

subject the bar to a repeated loading after disburdening, the material will not have the same 

yield strength y0, but its yield strength will correspond to approximately the stress at point D, 

i.e. the yield strength will be higher (in Figure 3.1, the yield strength under repeated loads is 

marked yi). Previous loading into the plastic deformation region thus led to an increase in 

yield strength during subsequent loading of the material. How this happened? 

We know that when plastic deformation occurs, dislocations start to move in the material, and 

also new dislocations are formed, i.e. their number increases (to speak professionally, the 

density of dislocations increases). Every dislocation creates a stress-strain field around itself 

and thereby the more dislocations are in the material, the more important these fields become; 

they may interact, which leads to the fact that the movement of dislocations is more and more 

difficult. We can simply say that the barriers to the movement of dislocations are the 

dislocations themselves when they are too many in the material. They prevent one another 

from moving. Plastic deformation thus leads to an increase in the density of dislocations, and 

it has the effect of increasing the yield strength during subsequent loading.  

In practice, of course, the strengthening by plastic deformation does not take place by means 

of tensile tests, but by cold forming, e.g. cold sheet rolling, cold wire or pipe drawing, etc. 

Therefore, this strengthening is sometimes also called deformation strengthening. Cold 

forming leads both to the modification of shapes of grains, which is shown in Figure 3.2, and 

to the increase in the density of dislocations. Dislocations can be almost exclusively observed 

through transmission electron microscopy (Fig. 3.3). 

 

Fig. 3.2 Shapes of grains prior to cold forming (a) and after cold forming (b) 

For determining the increase in yield strength by plastic deformation, the density of 

dislocations after plastic deformation of the material is important. This is denoted by the letter 
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 and is defined as the ratio of lengths of dislocation lines to volume. Most frequently it is 

expressed in cm
-2

. The equation for the density of dislocations can be written as follows: 

V

Ldisl           Eq. 3.1 

where  Ldisl is the length of dislocation lines, 

 V is the material volume. 

For the materials in an annealed state, the usual density of dislocations is about 10
5
 cm

-2
, 

while for the materials in the state after cold forming it is between10
9
 and 10

11
 cm

-2
.  

 

Fig. 3.3 Dislocations in aluminium viewed by transmission electron microscopy method 

The increase in yield strength after strengthening by plastic deformation can be expressed by 

the equation: 

  ....2 bGRe       Eq. 3.2 

where  is a constant equal to about 0.5, 

 G is the shear modulus, 

 b is the Burgers vector of dislocations, 

  is the dislocation density. 

Equation 3.2 shows that the rate of strengthening by plastic deformation is directly 

proportional to the square root of the dislocation density . 
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Solved example: 

Calculate the increase in yield strength for low carbon steel, for which the density of 

dislocations after cold forming was found to be =10
10

 cm
-2

. Consider the shear modulus G = 

70000 MPa and the Burgers vector of dislocations b= 2.8·10
-10

 m. 

Solution: 

We substitute the above specified values into Equation 3.2 and enumerate. 

MPabG 19610108.2700005.02....2 1410      

Conclusion: After the said cold forming, the yield strength of steel increases by 196 MPa. 

(And that's pretty much.) 

Strengthening by plastic deformation is used for low carbon steels, but very often also in 

metals and alloys with fcc lattice, which have only low mechanical properties in the annealed 

state. 

Unfortunately, strengthening by plastic deformation has also some very distinct 

disadvantages. The greatest disadvantage is a decrease of toughness, the embrittlement of 

material. In this respect, the strengthening by plastic deformation is probably the most 

dangerous type of strengthening. The possible decrease of toughness is illustrated in Figure 

3.4 a, b, where the increase in yield strength and ultimate strength after cold deformation is 

indicated for copper, brass and low carbon steel (a), as well as the decrease of ductility 

depending on the degree of cold deformation (b). 

 

Fig 3.4a The increase in yield strength and ultimate strength for copper, brass and steel 

depending on the degree of cold deformation 
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Fig. 3.4b The decrease of ductility for copper, brass and steel depending on the degree of cold 

deformation 

Figure 3.4b shows that the decrease of ductility is rather drastic already after 20% of cold 

deformation. The decrease of ductility after cold forming to some extent reduces the 

possibility of using this mechanism of strengthening for those applications where a higher 

value of material toughness is requested.  

 

 
Summary of terms from 3.1. 

 

After studying this part, following terms should be clear to you: 

 Strengthening by plastic deformation or cold forming 

 Density of dislocations 
 

 
Questions to 3.1. 

1. What is a barrier to dislocation movement in dislocation strengthening? 

2. What other term is used for dislocation strengthening? 

3. How is the dislocation density defined? 

4. On which parameter namely the rate of strengthening by plastic deformation depends? 

5. For what metallic materials the strengthening by plastic deformation is used? 

6. What is the main disadvantage of strengthening by plastic deformation? 



Strengthening mechanisms in metallic materials  

 64 

3.2. Grain boundary strengthening 

 

 
Time to study: 1 hour 

 

 
 

Objective       After reading this part, you should be able to: 

  Explain how metallic materials can be strengthened by grain boundary 

strengthening. 
 

 Specify what determines the degree of grain boundary strengthening. 

 

 Describe the main advantages and disadvantages of grain boundary 

strengthening. 

 
 

 
Presentation  

Very important mechanism that allows to increase the yield strength, i.e. strengthening of 

metallic materials, is the grain boundary strengthening. Generally, the higher yield strength 

can be expected in materials with a small grain size, i.e. in fine grained materials. In contrast, 

lower yield strength can be expected in coarse-grained materials. Why is it that fine-grained 

materials have a higher yield strength, i.e. grain refinement leads to strengthening? We will 

try to answer in reverse, i.e. to answer why the coarse-grained materials have lower yield 

strength. 

First, we must realize that the grain boundaries represent an obstacle in polycrystalline 

materials that dislocations cannot overcome. Dislocations are always in their movement 

restricted to grain, in which they were formed. Imagine a situation which is illustrated in 

Figure 3.5. Consider a coarse-grained polycrystalline material in which tensile stress  

operates. Then imagine that there is just one grain in this material oriented so that the plane of 

maximum shear stress (i.e. the stress that sets a dislocation in motion) is identical to the slip 

plane in this grain (i.e. the plane on which dislocations move). And also imagine that the 

maximum shear stress  is just so large that in this single grain a plastic deformation can 

occur. If plastic deformation takes place, it means that dislocations will move around this 

grain and new dislocations will be formed. Dislocations will move on slip planes to the 

boundary of the grain, where they stop. As more dislocations propagate to this grain 

boundary, dislocation “pile up” pup occurs. And this dislocation pile up is associated with 

the existence of a certain stress, which acts even into neighbouring grains. The bigger the 

grain is, the more dislocations pile up at the grain boundaries and the higher is the stress from 

this accumulation. This stress will be summed up with the shear stress on the slip planes in 
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neighbouring grains b, which are less favourably oriented, and the level of stress needed to 

cause plastic deformation may be exceeded. This means that plastic deformation may occur in 

a larger number of grains and macroscopic yield point is reached. 

A

B

pup

B

A

B

A

B

pup

B

 

Fig. 3.5 Schematic illustration to explain the low yield strength in coarse-grained material  

If the material is fine-grained and if plastic deformation is possible in just only one grain 

under the action of a certain stress , the dislocation pile up here at the grain boundaries will 

be lower. So also the stress from this pile up pup will be lower, and it is very likely that no 

plastic deformation occurs in neighbouring grains. This will occur only if a higher stress  

will act in the material. Finer grain thus means an increase in the yield strength of the 

material.  

The dependence of the yield strength upon the grain size is described by Hall-Petch 

relationship, which can be simply written as follows: 

d

K
R  0          Eq. 3.3 

where  0 is the friction stress, 

  K is a constant, 
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d is the grain diameter. 

In the case of steels with bcc lattice, the following empirical equations are given: 

d
Re

1
.727.060         Eq. 3.4 

d
Re

1
.523.080          Eq. 3.5 

(d is entered in m, Re in MPa). 

 

The question is, how far it makes sense to refine the grain size in order that there is still the 

increase in the yield strength. The limit is indicated by values between 10 and 100 nm. The 

size of grains in conventional materials is mostly in units of micrometres. Further refinement 

of grains below the level of micrometres makes sense as another possibility for increasing the 

yield strength of the material.  

Grain boundaries strengthening depends quite significantly on the type of crystal lattice of the 

metallic material. This type of strengthening is more effective in metals with bcc lattice. For 

metals having fcc lattice, the strengthening by grain refinement is less efficient, which is 

evident from Figure 3.6. 

ReRe

 

Fig. 3.6 The influence of grain size on yield strength for selected materials with bcc and fcc 

lattice 
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Solved example: 

Use Equation 3.4 to determine how much the yield strength of the steel increases, if there is a 

decrease in the mean grain size from 10 m to 1 m. 

Solution: 

By simply substituting, we get the yield strength of 290 MPa for the grain size 10 m, i.e. 

0.00001 m. 

MPaRe 290
00001.0

1
727.060   

 For grain size 1 m, i.e. 0,000001 m, Equation 3.4 gives the yield strength of 787 MPa.  

MPaRe 787
000001.0

1
727.060   

The increase in yield strength is 787 – 290 = 497 MPa. 

Conclusion: Decreasing the grain size from 10 m to 1 m gives the increase in yield strength 

of nearly 500 MPa (and this difference is extremely large). 

Grain boundary strengthening has a privileged position in a sense among all the strengthening 

mechanisms, and this privileged position is a positive one. Grain boundary strengthening. i.e. 

strengthening by grain refinement is the only strengthening method that leads to higher 

toughness of the material. And this is particularly valuable. 

 

 
Summary of terms from 3.2. 

 

After studying this part, following terms should be clear to you: 

 Grain boundary strengthening, i.e. strengthening by grain refinement 

 Dislocations pile up at the grain boundaries 

 Hall-Petch relationship 
 

 
Questions to 3.2. 

7. What is the barrier to the movement of dislocations in grain boundary strengthening? 

8. What is the main reason for the lower yield strength in coarse-grained materials? 

9. How to express the dependence of the yield stress on grain size? 

10. In materials with what type of crystal lattice the grain boundary strengthening is more 

effective? 
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11. To what size does it have a sense to refine the grain with respect to any possible increase 

in the yield strength? 

12. How does the grain boundary strengthening reflect in the material toughness? 
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3.3. Precipitation strengthening 

 

 
Time to study: 1.5 hours 

 

 
 

Objective       After reading this part, you should be able to: 

  Explain how to strengthen metallic materials using precipitates.  

 Describe the mechanism of intersection of precipitates by dislocations. 

 Characterize the mechanism of bowing of precipitates by dislocations. 

 

 Compare both of these mechanisms and explain what structural 

characteristics of the precipitates they depend on. 
 

 

 
Presentation  

Another strengthening mechanism, which allows to increase significantly the yield strength of 

metallic materials is the so called precipitation strengthening. Precipitates are very small 

particles of minority phases, i.e. those phases which are present in the material in a relatively 

small amounts (usually about ones of per cents by volume). Minority phases in steels may be 

carbides or nitrides. In other metallic materials, minority phases are various intermetallic 

phases, for example in aluminium alloys that can be Al2Cu phases, in nickel alloys Ni3Al 

phases, etc. 

The basic precondition for the precipitation strengthening to be effective is that the particles 

of precipitates are small and close to each other, i.e. there are relatively small distances 

between them. 

More specifically, the precipitates are determined by the following stereological parameters 

that characterize them more accurately:  

Volume fraction of precipitates  Vf (-) 

Number of particles per unit volume NV (m
-3

) 

Mean particle diameter (radius)   d (r) (m) 

Mean interparticle spacing      (m) 

 

Probably the most important parameter is the mean interparticle spacing and particle diameter 

or radius. For most materials, it is most advantageous when the values of these two 
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parameters are in the tens of nanometres. It is therefore evident that particles of precipitates 

must be really very small and must be very close to each other so that the precipitation 

strengthening is effective. This configuration is schematically illustrated in Figure 3.7. 

There is a wide range of relationships for the determination of the mean interparticle spacing, 

let us mention a few at random: 

f

f

V

rV

.3

).1.(4 
          Eq. 3.6 

d
dNV

.
3

2

.

1
          Eq. 3.7 

For a constant volume fraction of precipitates it is true that the smaller is the particle radius, 

the smaller is the interparticle spacing (since their number increases).  

 

Fig. 3.7 The characteristic distribution of precipitates for optimal precipitation strengthening 

In the case of precipitation strengthening, the barriers to the movement of dislocations are the 

particles of precipitates. If dislocations are to move in a metal matrix, where there are 

particles of other phases, often even with a different type of crystal lattice, they need a higher 

stress to start moving, which therefore means the strengthening, i.e. increase in the yield 

strength. 

If a dislocation moves within the matrix, in which the particles of precipitates are present, 

there are basically two possible mechanisms of interaction between a dislocation and 

a precipitate. Which mechanism is applied, it depends primarily on the size of the precipitate 

and its nature.  
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 Mechanism of intersection of precipitates by dislocations 

If precipitates are small and so called coherent with a metal matrix, the mechanism of 

intersection of a precipitate by dislocation applies. But we have to explain what a coherent 

precipitate is. Coherence is a word derived from Latin and means among other things the 

continuity. Coherent precipitate is such a precipitate, which has a continuity of its 

crystallographic planes with crystallographic planes in the matrix. So we can say that certain 

crystallographic planes of the matrix are continuously passing to the crystallographic planes 

of the precipitate and then again to the crystallographic planes of the matrix. Any mismatch in 

the lattice parameters of the precipitate and metal matrix is compensated by elastic 

deformation. Coherent precipitates with most materials are particles up to about 10 nm, i.e. 

only very small particles. Example of a coherent precipitate is shown in Figure 3.8. Figure 3.9 

then illustrates the mechanism of intersection of precipitates by dislocations. 

 

Fig. 3.8 Example of a coherent precipitate 

 

Fig. 3.9 Schematic illustration of intersection of a precipitate by a dislocation 

As shown in Figure 3.9, when the precipitate is intersected by one dislocation, the two parts 

of the precipitate are displaced (above and below the slip plane in which the dislocation 

moves) by the value of the Burgers vector of dislocation b. Example of intersection of 

particles of Ni3Si precipitates in Ni-6% Si system is shown in Figure 3.10. (This is a quite 

exceptional example, because you can see that in this case the particles of precipitates are 

extremely large.) 

precipitate 
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Numerous relationships were derived for the increment of strengthening induced by 

intersection of precipitates by dislocations. These are mostly semi-empirical relationships, and 

so they differ from each other. The simplest example is the relationship: 





.

..

b

r
R PM
e

         Eq. 3.8 

where  M-P is the specific surface energy of matrix – precipitate boundary (usually is between 

0.01 and 0.03 J.m
-2

), 

 r is the precipitate radius, 

  is the mean interparticle spacing, 

 b is the Burgers vector of dislocation. 

When considering the deformation  caused by the difference of lattice parameters of matrix 

and precipitate, we get the following relationship:  

3/1

3/23/4
... 










b

r
VkonstR fe        Eq. 3.9 

where   is the elastic deformation caused by the difference of lattice parameters of matrix and 

precipitate; 

 Vf is the volume fraction of precipitate. 

 

 

Fig. 3.10 Intersection of Ni3Si particles in Ni-6%Si system (viewed by transmission electron 

microscopy method) 
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It will do the trick when we remember that in the case of the mechanism of intersection of 

precipitates by dislocations, it is true that the larger the precipitates are, the greater is the 

increase in strengthening. (This follows from the fact that in both Equations 3.8 and 3.9, the 

precipitate radius appears in the numerator). 

Solved example: 

Use Equation 3.8 to determine the strengthening increment (increase in the yield strength) by 

precipitation strengthening using carbide precipitates in the steel, when considering the 

surface energy of the boundary of 0.02 J.m
-2

, mean radius of the precipitates of 20 nm and 

mean interparticle spacing of 50 nm. 

Solution: 

We substitute into Equation 3.8 (just be careful about the units, everything will be substituted 

in SI base units and only the end result will be converted to MPa).  

Therefore it applies: 

MPamN
b

r
R PM
e 224.10224
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.. 26

910
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


 










 

Conclusion: For specified values, the intersection of precipitates by dislocations will cause an 

increase in yield strength of 224 MPa in the steel with carbide precipitates. 

 

Mechanism of bowing dislocations around precipitates 

If particles of precipitates are larger, and the precipitates are no longer coherent with the 

matrix (i.e. there is no longer a continuity of crystallographic planes in the matrix and in the 

precipitate), the mechanism of precipitate intersection cannot be applied, but a different 

mechanism of interaction precipitates and dislocation can apply. This mechanism is the so-

called bowing of dislocations around precipitates. This mechanism was first described by 

Orowan and so it is often called Orowan mechanism. The principle of this mechanism is 

shown schematically in Figure 3.11. 

The mechanism of bowing of dislocations around precipitates works as follows: if 

a dislocation moves in the material and approaches a precipitate, which is not coherent, and 

cannot therefore intersect it, the dislocation begins to curve gradually in the vicinity of the 

precipitate until it forms a closed dislocation loop around the precipitate. The straight parts of 

dislocation again join together after enlacing the precipitate and the dislocation can move on. 

Higher stress is needed to bend around a precipitate, which means strengthening, i.e. an 

increase in yield strength. The example of bowing dislocations around Ni3Si precipitate in Ni-

6% Si system is shown in Figure 3.12. 
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Fig. 3.11 Principle of Orowan mechanism 

 

 

Fig. 3.12 Dislocation loops around Ni3Si particles in Ni-6%Si system (viewed by transmission 

electron microscopy method) 

 

The strengthening increment in Orowan mechanism can be again expressed in a variety of 

different relationships, but we will mention only one. Increase in the strengthening can be 

described by the following equation: 

r

VbG
konstR

f

e

2/1
..

. ,       Eq. 3.10 

Each member has been already described in the previous equations. 

The point is that in Equation 3.10, the precipitate particle radius is in the denominator, which 

means that in bowing of precipitates the smaller the precipitates are, the higher is the 

strengthening. This stems from the fact that the smaller is the radius of dislocation curvature, 

the higher is the stress necessary for the dislocation to curve. 
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If we compare the two mechanisms of interaction of dislocations with precipitates, we may 

say that the maximum strengthening is achieved in the area where the mechanism of 

intersection of precipitates merges into the mechanism of bowing dislocations around 

precipitates. 

The precipitation strengthening is used in a wide variety of steels, e.g. all steels for use at 

elevated temperatures (in different nodes of thermal power plants) are based on the 

precipitation strengthening. This strengthening is also used in many non-ferrous metals, such 

as aluminium, copper and nickel alloys, etc. 

The negative feature of the precipitation strengthening (as in the case of strengthening by 

plastic deformation) is the decrease in plastic properties of the material, i.e. the decrease of 

toughness. But in the case of the precipitation strengthening, the decrease of toughness is not 

as dramatic as in the case of strengthening by plastic deformation.  

 

 
Summary of terms from 3.3. 

 

After studying this part, following terms should be clear to you: 

 Precipitation strengthening 

 Intersection of precipitates by dislocations 

 Coherent precipitate 

 Bowing of dislocations around precipitates – Orowan mechanism 
 

 
Questions to 3.3. 

13. What do we understand by the term of precipitates? 

14. Which stereological parameters of the precipitates are the most important in terms of 

possible degree of precipitation strengthening? 

15. What is the basic condition that the precipitates should meet for the precipitation 

strengthening to be effective? 

16. How coherent precipitates can be characterized? 

17. What is the mechanism of interaction that is applied between coherent precipitates and 

dislocations? 

18. How does the strengthening increment depend on the radius of precipitates in the 

intersection of precipitates? 

19. Up to what size of precipitates the mechanism of intersection of precipitates can be 

usually applied? 

20. How the lattice mismatch between the matrix and precipitates is compensated in the case 

of coherent precipitates? 
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21. What formation a dislocation leaves around the precipitates in the case of bowing of 

precipitates by dislocations? 

22. How does the strengthening increment depend on the radius of precipitates in the Orowan 

mechanism? 
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3.4. Solid solution strengthening 

 

 
Time to study: 1 hour 

 

 
 

Objective       After reading this part, you should be able to: 

  Explain the principle of solid solution strengthening. 

 Characterize the difference between the so called elastic interaction and 

modular interaction. 

 
 

 
Presentation  

Increase in the yield strength of metallic materials can be even caused by atoms of impurities 

which are dissolved in the matrix, i.e. they constitute a solid solution with the basic 

component. Solid solution strengthening can be caused by both substitutionally and 

interstitially dissolved atoms.  

Generally, dissolved atoms have a different size than the basic atoms in the matrix, which 

generates a stress field in the vicinity of a dissolved atom and associated elastic distortion of 

the lattice. Atoms of elements of smaller radiuses induce a local shrinkage of the crystal 

lattice, or they are preferably located into areas of tension field of dislocations (Fig. 3.13a,b). 

In contrast, the atoms of elements with a larger radius than is the radius of atoms of the basic 

element induce stretching (dilatation) of the crystal lattice or may be placed into areas of 

tension field of dislocations (Fig. 3.14a,b). A higher stress is required for the movement of 

dislocations in a given area, which means the strengthening of material or more precisely, the 

increase in its yield strength. 

 

Fig. 3.13 Location of dissolved atoms with a smaller radius in the crystal lattice 
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Fig. 3.14 Location of dissolved atoms with a larger radius in the crystal lattice 

The strengthening increment depends both on the degree of lattice distortion induced by 

a dissolved element, and on its concentration.  

This is just one of the existing relationships that describe the increment of strengthening 

caused by substitutionally dissolved atoms: 

cbGRe ...         Eq. 3.11 

where  G is the shear modulus of the material, 

  b is the Burgers vector of dislocation,  

   is the elastic deformation caused by a dissolved atom, 

  c is the concentration of a dissolved element. 

The above described strengthening by dissolved elements is sometimes called the elastic 

interaction. 

Besides the elastic interaction, also the modulus interaction may take part in the 

strengthening by dissolved atoms, which reflects the fact that for some elements their bond 

energy with the basic element is higher than the bond energy between atoms of the basic 

element. This is shown, inter alia, by higher shear modulus of the material and the 

corresponding increment can be expressed as follows: 

cGRe .         Eq. 3.12 

where G is the increase in the shear modulus, 

  c is the concentration of a dissolved element. 
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In the case of steel, simple empirical relationships are often used, which include the effect of a 

higher number of dissolved elements, while an additive character is assumed for the 

increment of strengthening: 





n

i

iie ckR
1

.
        Eq. 3.13 

where  k is the constant that differs for each element dissolved (see Tab. 3.1), 

  c is the concentration of a dissolved element in % by mass. 

 

Tab. 3.1. Constants k for the solid solution strengthening of steels by substitutionally 

dissolved atoms 

Element P Si Ti Mn Cr Mo V 

Constant k 350 80 100 50 -10 22 24 

 

From Table 3.1 it is seen that the highest solid solution strengthening of the steel would be 

ensured by phosphorus, but since it is a harmful element, it is not very useful in practice. In 

practical terms, in the case of steels the most significant is their strengthening by dissolved 

silicon atoms. 

 

 
Summary of terms from 3.4 

 

After studying this part, following terms should be clear to you: 

 Solid solution strengthening 

 Elastic interaction 

 Modulus interaction 
 

 
Questions to 3.4 

23. What is the solid solution hardening based on? 

24. What do we understand by the term of elastic interaction? 

25. What do we understand by the term of modulus interaction? 

26. Which element would ensure the highest level of solid solution strengthening in steel? 

27. Which element is the most important for solid solution strengthening of steels from the 

practical standpoint? 
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Key to the solution – answers to questions to Chapter 3 

A1 The barrier to the movement of dislocations are dislocations occurred in the previous 

plastic deformation. 

A2 Deformation strengthening or strengthening by cold forming. 

A3 The dislocation density is the proportion of the lengths of dislocation lines and volume of 

the material. 

A4 The rate of strengthening by plastic deformation depends primarily on the density of 

dislocations. 

A5 Strengthening by plastic deformation is used for example in low-carbon steels, copper 

and aluminium alloys, etc. 

A6 The main disadvantage of strengthening by plastic deformation is a decrease of 

toughness. 

A7 The barrier to the movement of dislocations are grain boundaries themselves. 

A8 The higher rate of dislocations pile up at the grain boundaries and the associated higher 

stress from this pile up. 

A9 The yield strength is directly proportional to the inverse of square root of the grain 

diameter. 

A10 Grain boundary strengthening is more effective for materials with bcc lattice. 

A11 It has a sense to refine the grain to the size of about 10-100 nm. 

A12 Grain boundary strengthening is manifested through increased toughness. 

A13 The precipitates are fine particles of minority phases, carbides, nitrides, intermetallic 

phases, etc. 

A14 The most important stereological parameters of the precipitates are their diameter and 

mean interparticle spacing. 

A15 For the precipitation strengthening to be effective, precipitates must be small and close to 

each other. 

A16 Coherent precipitates are such precipitates, for which there is a continuity of  

crystallographic planes of the precipitate and the matrix. 

A17 Coherent precipitates are cut by dislocations. 

A18 In the intersection of precipitates, the strengthening increases with the increasing radius 

of the precipitates. 

A19 Mechanism of intersection of precipitates is applied up to the precipitate size of about 10 

nm. 

A20 In coherent precipitates, the lattice mismatch between the precipitates and matrix is 

compensated by elastic deformation. 

A21 In the case of bowing of precipitates, the dislocation leaves a dislocation loop  around the 

precipitate. 

A22 In bowing of precipitates, the strengthening increment decreases with the increasing 

radius of the precipitates. 

A23 Solid solution strengthening is primarily based on the different size of dissolved atoms 

and atoms of the basic element.  

A24 Elastic interaction means the solid solution strengthening based on the different size of 

atoms of dissolved elements and basic element.  

A25 Modular interaction means the solid solution strengthening based on a higher bond 

energy between atoms of the dissolved element and of the basic element. 

A26 The highest level of solid solution strengthening in steel would be ensured by 

phosphorus. 

A27 From the practical standpoint,  the most important solid solution strengthening in steels is 

caused by dissolved silicon atoms. 
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Other sources 

 
Callister W.D. jr., Rethwisch D. G.: Fundamentals of Materials Science and 

Engineering. An Integrated approach. Hoboken: Wiley, 2008. 3rd ed. 882 p. ISBN 

978-0-470-12537-3. 
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4.  SEGREGATION PROCESSES IN METALLIC 

MATERIALS 

  

4.1.  Division of segregation processes in metallic materials – 

macrosegregation, dendritic segregation 
 

 
Time to study: 2 hours 

 

 
 

Objective       After reading this part, you should be able to: 

  Divide segregation processes in metallic materials. 

 Characterize the principle of macrosegregations and dendritic segregations. 

 Describe further characteristics of dendritic segregation and possibilities of 

their reduction. 

 

 

 
Presentation  

 

 Division of segregation processes 

Segregation processes in metallic materials can be simply divided into macrosegregations 

and dendritic segregations on the one hand, and microsegregations on the other. 

Occurrence of macrosegregations and dendritic segregations is associated with liquation of 

metallic material during their solidification.  

In contrast, microsegregations mean enrichment of certain areas of the material by 

impurity elements, wherein this enrichment takes place in a very thin layer - typically 

monatomic or diatomic. Microsegregations most commonly occur at the boundaries of 

grains, then at the boundary of nonmetallic inclusion - matrix and at the boundary 

precipitates - matrix. The liquation during solidification of material is not the cause of 

microsegregations. 

 Macrosegregations 

Macrosegregations represent a phenomenon, in which the different parts of material have 

different chemical composition and this difference in chemical composition manifests itself 

across great distances comparable with the dimensions of ingots (in the classical method of 

casting). Given that you have dealt with this type of segregations in the bachelor's degree 

studies, it will not be addressed here in detail, we will just repeat what is its principle.  
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Macrosegregation is a consequence of liquation during solidification, i.e. redistribution of 

the elements between the solid and liquid phases. For each impurity element, a partition 

coefficient k can be defined, which indicates the ratio of its concentration in the solid phase 

(solidus) and liquid phase (liquidus).  

 

Thus you can write that the partition coefficient k is 

L

S

c

c
k            Eq. 4.1 

where Sc  is the concentration of an element in the solid phase, 

 Lc  is the concentration of an element in the liquid phase.  

For most elements (e.g. in steel) it is true that their partition coefficient is less than one, i.e. 

that in those parts of the ingot, which solidify first, the concentration of these elements is 

the lowest, while the highest concentration of these elements is in those parts of the ingot, 

which solidify last.  

The situation is schematically illustrated in Figure 4.1 in the example of a diagram with 

unlimited solubility in both liquid and solid state. (If you do not remember where you first 

came across it,  it was in the Materials Science course in the first year of Bachelor’s 

degree studies – please refresh your knowledge). 
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Fig. 4.1 Scheme to explain the liquation during solidification, which is the cause of the 

macrosegregation occurrence 
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Macrosegregations, as already mentioned, take place across large distances, and if they 

occur, they can neither be eliminated from the material nor their intensity reduced.  

 Dendritic segregations 

The dendritic segregations arise for the same reason as macrosegregations, i.e. due to 

liquation of material during solidification, but the distance, across which they occur, is 

much smaller and usually ranges up to hundreds of micrometres.  

You will certainly recall that during solidification of the ingot, various kinds of crystals are 

produced, which is schematically shown in Figure 4.2, which represents the longitudinal 

and cross section through an ingot. 

 

 

 

Fig. 4.2 Display of crystals on the longitudinal and cross sections through an ingot 

 

Near the surface of the ingot, i.e. along the walls of the mould, there usually occur 

equiaxed grains. They are typically followed by the zone of columnar crystals. And in the 

middle of the ingot cross cut, there again appear equiaxed grains. In the area of columnar 

crystals, the so-called dendritic growth take place, when the heat is removed also through 

the liquid phase. In the case of dendritic growth, the crystals preferentially grow in the 

direction of the melt, in certain preferred crystallographic directions - for example, in the 

case of steel and solidification of the solid solution , the preferred direction is 001. 

Within one columnar crystal, even several dendrites can form. At first, they produce a 

primary axis and gradually even secondary and tertiary axes may occur. Dendrites thus 

receive their typical “tree” morphology. Example of a dendritic structure is shown in 

Figure 4.3. 

Primary zone 
 

Secondary zone 
 

Tertiary zone 
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Fig. 4.3 Example of dendritic structure 

 

Example of formation of dendrites within one columnar grain is shown in Figure 4.4. 

 

 

Fig. 4.4 Formation of dendrites within one columnar grain 

 

First, primary axes of dendrites arise, then secondary and tertiary axes. The space between 

them, the interdendritic space, is filled with the melt and the concentration of all elements, 

the distribution coefficient k of which is smaller than 1, increases. This interdendritic space 

solidifies later and the increased concentration of the elements that liquate into the melt, is 

retained there. 

Figure 4.5 shows an example of the etched metallographic specimen in nickel alloy casting 

for the aerospace industry, with visible dendritic liquation. Interdendritic spaces, which are 

enriched with elements liquating into melt, etch darker. 

 

osa dendritu

mezidendritický prostor-tavenina

osa dendritu

mezidendritický prostor-tavenina

osa dendritu

mezidendritický prostor-tavenina

Dendrite 
axis 

Interdendritic space - melt 



Segregation processes in metallic materials 

 86 

50 m50 m50 m

 

Fig. 4.5 The etched specimen in nickel alloy casting with visible dendritic segregations 

(areas of liquation etch darker) 

 

Unlike macroscopic segregations, dendritic segregations can be at least partially reduced 

by a prolonged homogenizing annealing. Roughly it can be assumed that due to dendritic 

segregations, the content of certain elements periodically increases and decreases and the 

amplitude of this variation can be determined experimentally. In long-term annealing at 

high temperatures the amplitude of variations in the content of elements can decrease, 

which we dealt with in Chapter 2.2 on diffusion.  

 

 
Summary of terms from 4.1 

After studying this part, following terms should be clear to you: 

 

 Macrosegregation and microsegregation 

 Material liquation during solidification 

 Columnar crystals 

 Dendritic segregation 

 

 
Questions to 4.1 

 

1. As a result of what macrosegregations occur in metallic materials? 

2. What is the value of the partition coefficient for most impurity elements in steels? 
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3. Can macrosegregations be eliminated by annealing? 

4. What are dendrites in metallic materials? 

5. Across what distance the dendritic segregation approximately occurs? 

6. Is it possible to reduce the intensity of dendritic segregation in metallic materials in 

any way? 
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4.2.  Microsegregation at the grain boundaries 
 

 
Time to study: 3 hours 

 

 
 

Objective       After reading this part, you should be able to: 

  Describe the basic characteristics of segregation at grain boundary. 

 Solve problems related to the equilibrium grain boundary segregation. 

 Explain under what conditions we can expect a non-equilibrium grain 

boundary segregation. 

 

 

 
Presentation  

 Basic characteristics of microsegregation at the grain boundares 

Microsegregation at a grain boundary represents an enrichment of the grain boundary by 

certain impurity elements, in a very thin layer, either a monatomic or diatomic. The driving 

force for microsegregation at grain boundary is, of course, thermodynamic. If grain 

boundaries are enriched by certain impurity elements, the free enthalpy of the system 

decreases, i.e. the system of segregations to grain boundaries here passes into a more stable 

state. The impurity elements, which segregate to the grain boundaries, are called surface-

active elements. 

Segregation at grain boundaries, however, takes place through diffusion of impurity 

elements, and thus whether there is equilibration or not depends also on the temperature 

level. From this perspective, segregation at the grain boundary is divided into equilibrium 

segregation (equilibrium state is achieved) and non-equilibrium segregation (equilibrium is 

not achieved, especially at low temperatures).  

There is a whole range of factors determining why the free enthalpy of the system declines 

during segregation of certain elements at the grain boundaries. We mention here only one, 

and it is the factor of the size of atoms. For a number of elements, there is no simple 

relationship between the atomic number and size of the atom, some elements have larger 

atomic dimension than one might judge from their atomic number. Their presence in the 

nodal points of the lattice can cause a relatively large deformation, which reduces the 

stability of the system. When atoms of such elements diffuse to the grain boundaries and 

they are enriched at the grain boundaries, the stability of the system increases. Why? 

Large-angle boundaries of grains, about which we are talking, are disorders where there is 
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more free space than in a normal crystal lattice and so the impurity elements more easily 

“fit in”.  

Is the segregation of impurity elements at the grain boundaries beneficial, detrimental or 

neutral from this point of view? There is no clear answer, but in many cases the 

segregation at the grain boundaries may be very harmful. For example, surface-active 

elements in steels include most of the harmful elements - phosphorus, sulphur, arsenic, 

antimony, and tin - and their segregation at the grain boundaries leads to embrittlement of 

steel and development of intercrystalline brittle fracture. As a result of segregation of 

detrimental elements at the grain boundaries, the cohesive strength of the grain boundary is 

reduced (the reduction of bond energy between atoms of the basic element - in the case of 

steel this means the reduction of bond energy between atoms of iron). Example of 

intercrystalline brittle fracture of structural steel induced by segregation of phosphorus at 

the grain boundaries is shown in Figure 4.6. 

 

 

Fig. 4.6 Example of intercrystalline brittle fracture induced by segregation of phosphorus 

at the grain boundaries 

 

In some cases, a quite clear correlation was found between the temperature of transition of 

brittle - ductile condition and the phosphorus concentration at the grain boundaries in the 

steel (Fig. 4.7).  
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Fig. 4.7 Correlation between DBTT (ductile-brittle transition temperature) and 

concentration of phosphorus CP at the grain boundaries in steel 

 

It is therefore obvious that an increased content of phosphorus at the grain boundaries 

shifts the transition temperature towards higher values, which is undesirable.  

Surface-active elements that segregate at the grain boundaries, include also some beneficial 

elements, such as molybdenum. 

 Equilibrium segregation at grain boundaries in a binary system 

Consider a binary system, in which the basic element is generally denoted M and surface 

active impurity is denoted I. 

We would be interested to know what will be the equilibrium concentration of impurities at 

the grain boundaries. This equilibrium concentration is usually considered as the atomic 

fraction of impurities in monatomic layer at the grain boundary. 

The solution is based on the Langmuir-McLean segregation theory and after a certain 

simplification it leads to the following equation:  
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      Eq. 4.2 

where 

GB
in  is the equilibrium rate of coverage of grain boundaries by atoms of impurity i (atomic 

fraction of impurity i at the grain boundary), 

in  is the atomic fraction of impurity i in the system, 

segGB
iMG   is the free enthalpy of segregation of impurity i at the grain boundaries in the M-

i system (J/mol), 

R is the universal gas constant 8.314 J/mol.K 
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T is the absolute temperature (K) 

 

Simplification of Equation 4.2 consists in the fact that it is assumed that the whole area of 

the grain boundaries is available for the segregation of impurity element.  

 

For a very low content of impurity element i, it is true that: 
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Equation 4.2 can be then simplified using Equation 4.3 to the form: 
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After adjustment, we obtain the relationship for the equilibrium rate of coverage of 

impurity i (its atomic fraction at the grain boundaries): 
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       Eq. 4.5 

 

Important: The free enthalpy of segregation of impurity i at the grain boundary 

segGB
iMG   is negative because it represents the energy which the system creates and 

not the energy that would have to be supplied to the system. Therefore, the argument 

of the exponent is a positive number and it will apply that with increasing 

temperature the equilibrium rate of coverage will decline.  

 

From a thermodynamic point of view, the atoms of surface active elements want to be at 

the grain boundaries to the greatest possible extent at low temperatures. This has a certain 

logic, if we admit that one of the causes of segregation is the varied size of impurity atoms. 

At higher temperatures, due to a higher amplitude of the vibrational motion of atoms, it is 

not difficult for impurity atoms to “squeeze” into the crystal lattice of the basic element M. 

However, at low temperatures, when the amplitude of the vibrational motion of atoms is 

small, this problem is more pronounced and for the impurity atoms it will be more 

advantageous from a thermodynamic point of view to enrich the grain boundaries. 
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Temperature dependence of the equilibrium concentration of phosphorus at the grain 

boundaries of steel is shown in Figure 4.8. 

 

 

Fig. 4.8 Temperature dependence of the equilibrium concentration of segregation of 

phosphorus in the steel 

 

 

 

Note: 

Instead of free enthalpy of segregation, the segregation energy E (J/mol) is often 

mentioned. Moreover, this energy is sometimes referred to as the interaction energy of 

segregation and is considered as positive. In the event that the segregation energy E is 

considered as positive, it is necessary to modify the relationship for the calculation of 

GB
in  as follows: 
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       Eq. 4.6 

 

Solved example 4.1 

Problem: 

Consider Fe-P binary system with the phosphorus content of 0.03 % by weight. Calculate 

the equilibrium rate of coverage of boundaries by phosphorus atoms at a temperature of 

500°C, if the atomic weight of iron is 55.85 and atomic weight of phosphorus 30.97 and if 
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the interaction energy for phosphorus segregation at the iron grain boundaries 
segGB

PFeE  = 

50 kJ/mol. 

Solution: 

We can use Equation 3.6 for the solution. 

But first we need to convert the weight percent of phosphorus to the atomic fraction of 

phosphorus.  

This can be done as follows (see the textbook of chemistry): 
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Then we can calculate the member  
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And finally, we can calculate the degree of enrichment of the grain boundaries by 

phosphorus as follows: 

56360
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Conclusion:  

At a temperature of 500°C,  the degree of enrichment of the grain boundaries by 

phosphorus in Fe-P binary system is about 0.5636, i.e. about half of the possible 

places at the grain boundaries is occupied by phosphorus atoms. 

 Non-equilibrium segregation at grain boundaries in a binary system 

We encounter the non-equilibrium segregation preferably at lower temperatures, where the 

segregation is strongly favoured from a thermodynamic aspect, but the diffusion ability of 

atoms is so low that they are unable to diffuse sufficiently intensely to the grain 

boundaries. The relationship between equilibrium and non-equilibrium segregation is 

shown in Figure 4.9. 
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Fig. 4.9 Illustration of the relationship between equilibrium and non-equilibrium 

segregation 

 

In non-equilibrium segregation, it is necessary to take into account the ability of atoms that 

are to segregate, at a given temperature and the time over which segregation takes place. 

Solution of the diffusion problem for non-equilibrium segregation leads to the following 

equation: 
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where 

)(tn
GB
i  is the atomic fraction of element i at the grain boundary in time t, 

GB
in 0   is the atomic fraction of element i at the grain boundary in time t=0, 

GB
in   is the equilibrium concentration (atomic fraction) of element I at the grain 

boundary, 

i

GB
i

n

n
  is the degree of enrichment of the grain boundary by element i, 

Di  is the coefficient of diffusion of element i, 

d  is the grain boundary thickness, 

t  is the isothermal dwell time at temperature. 

 

The non-equilibrium concentration need not occur only at low temperatures. The non-

equilibrium segregation can take place even at higher temperatures, e.g. during rapid 

cooling from temperatures of 1200 (1300°C) to a temperature of about 700°C, where there 
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is an excess of vacancies and complexes vacancy - segregating element are formed. 

Vacancies accelerate the diffusion of impurity elements to the grain boundaries and 

temporarily the concentration of the segregated element can increase above the equilibrium 

concentration. 

 

 

 
Summary of terms from 4.2 

After studying this part, following terms should be clear to you: 

 Microsegregation at the grain boundaries 

 Equilibrium microsegregation at the grain boundaries 

 Interaction energy of segregation 

 Non-equilibrium microsegregation at the grain boundaries 

 

 

 
Questions to 4.2 

7. How do we call elements having the ability to segregate at the grain boundaries? 

8. What is the driving force for the segregation of elements at the grain boundaries? 

9. How does the degree of coverage of grain boundaries by segregating element depend 

on the temperature in equilibrium segregation?  

10. At what temperatures is the equilibrium rate of coverage of grain boundaries by 

segregating element highest? 

11. At what temperatures is it most likely to encounter the non-equilibrium segregation? 

12. How does the rate of coverage of grain boundaries by segregating element change with 

temperature in non-equilibrium segregation? 

 

 

 
Task to solve 4.2 

Problem: 

Consider Fe-P binary system with the phosphorus content of 0.04 % by weight. Calculate 

the equilibrium rate of coverage of boundaries by phosphorus atoms at temperatures of 

300°C and 700°C, if the atomic weight of iron is 55.85 and atomic weight of phosphorus 

30.97 and if the interaction energy for phosphorus segregation at the iron grain boundaries 

segGB
PFeE  = 50 kJ/mol. 

 

Results: 
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For a temperature of 300°C, the rate of coverage of grain boundaries by phosphorus atoms 

is 0.963; For a temperature of 700°C, the rate of coverage of grain boundaries by 

phosphorus atoms is 0.258. 
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4.3.  Microsegregation at the grain boundaries in the ternary and 

polycomponent systems 
 

 
Time to study: 1.5 hours 

 

 
 

Objective    After reading this part, you should be able to: 

  Explain the concept of competitive segregation. 

 Describe the interactive segregation  

 Explain how these phenomena can affect the properties of materials.  

 

 
Presentation 

 

In the ternary or polycomponent systems, there may exist more surface-active elements 

that will tend to segregate at the grain boundaries. In principle, two cases may occur in 

such systems: 

1. There may be the so-called competitive segregation where the segregation of one 

element limits (decreases) the segregation of the other segregating element. This 

repulsive effect is encountered, for example, in the case of a simultaneous 

segregation of sulphur and phosphorus in steel, or phosphorus and carbon in steel, 

or molybdenum and phosphorus in steel. 

2. Interactive segregation or co-segregation takes place where the segregation of 

two or more elements is mutually supported. Such a situation occurs, for example, 

in segregation of Mo and C, or Si and B in steels. 

 Competitive segregation 

As already mentioned, the competitive segregation means that the segregation of one 

surface-active element prevents the segregation of other surface-active element or 

elements. Preferentially segregates that element, which has the highest interaction energy 

of segregation. Example of a competitive segregation of carbon and phosphorus in steel is 

shown in Figure 4.10. 
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Fig. 4.10 Example of a competitive segregation of carbon and phosphorus in steel  

 

Figure 4.10 shows that a relatively small increase in the content of carbon in steel leads to  

more intense carbon segregation at the grain boundaries, while segregation of phosphorus 

declines. The interaction energy of phosphorus segregation at the grain boundaries in steel 

is about 50 kJ/mol, while the interaction energy of carbon segregation is higher and 

reaches values of about 80 kJ/mol. The segregation of carbon is therefore 

thermodynamically more favourable, and therefore more likely than the phosphorus 

segregation. Even higher is the interaction energy of sulphur segregation at the grain 

boundaries in steel, which is about 130 kJ / mol. 

 

The solution to the competitive segregation of two surface-active elements was presented 

by Guttmann in the seventies of the 20th century for the case of equilibrium segregation. 

Consider a system with two ternary surface-active elements i and j, which are able to 

segregate at the grain boundaries. You can then express the rate of coverage of grain 

boundaries by elements i and j under equilibrium conditions as follows:  
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where the symbols are analogous to those listed in section 4.2. 

 

Solved example 4.2 

Problem: 

Consider Fe-C-P ternary system with the carbon content of 0.001% by weight and  

phosphorus content of  0.03%  by weight. Calculate the equilibrium rate of coverage of 

grain boundaries by carbon and phosphorus atoms at a temperature of 300°C, if you know 

that the atomic weight of carbon is 12.01, atomic weight of phosphorus is 30.97 and atomic 

weight of iron is 55.85. 

Solution: 

In principle, the solution is directly given by Equations 4.8 and 4.9 

To use these equations, we must express the content of carbon and phosphorus as atomic 

fractions. 

We can write: 
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Then we can calculate the members: 
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And now, we can calculate the rate of coverage of grain boundaries by carbon atoms on the 

one hand and phosphorus atoms on the other: 
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Conclusion:  

In Fe-C-P system at a temperature of 300°C, the rate of equilibrium coverage of the 

grain boundaries by carbon atoms is 0.9779, while the rate of equilibrium coverage of 

the grain boundaries by phosphorus atoms is only 0.0291. The segregation of carbon 

atoms therefore significantly prevails, thanks to the higher interaction energy of 

carbon segregation. 

 

The competitive segregation occurs, among others, in Fe-Mo-P or Fe-B-P systems, where 

both Mo and B reduce the intensity of phosphorus segregation at the grain boundaries. The 

mentioned behaviour is illustrated in Figures 4.11 and 4.12. 

 

 

Fig. 4.11 Competitive segregation in Fe-Mo-P system 
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Fig. 4.12 Competitive segregation in Fe-B-P system 

 

 Interactive segregation 

The interactive segregation or co-segregation means that segregation of two or more 

elements segregating along grain boundaries can support each other. Or there may be 

situations where the presence of an element, which does not significantly segregate itself at 

the grain boundaries, increases the degree of segregation of other element. Figure 4.13 

shows an example of co-segregation of titanium and antimony at the grain boundaries in 

pure iron. From the figure it is seen that the segregation of the two elements is mutually 

supported. 

 

Fig. 4.13 Example of interactive segregation of Ti and Sb in pure Fe 

 

 



Segregation processes in metallic materials 

 102 

Figure 4.14 shows how the varied content of nickel in iron affects the antimony 

segregation at the grain boundaries. In this case, the nickel itself does not segregate at the 

iron grain boundaries, but its higher content facilitates the grain boundary segregation of 

antimony in iron. 

 

 

Fig. 4.14 Effect of Ni content on segregation of Sb at the iron (Fe) grain boundaries 

 

 
Summary of terms from 4.3 

After studying this part, following terms should be clear to you: 

 Competitive segregation 

 Interactive segregation/co-segregation 

 

 
Questions to 4.3 

13. What does the term competitive segregation in polycomponent systems mean?  

14. In what pairs of elements that segregate at the grain boundaries in steels the effect of 

competitive segregation may apply? 

15. Does the competitive segregation in steels seem to you to be rather beneficial or 

harmful? 

16. What does the term interactive segregation mean? 
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Task to solve 4.3 

 

Problem: 

Consider Fe-C-P ternary system with the carbon content of 0.002% by weight and  

phosphorus content of  0.05%  by weight. Calculate the equilibrium rate of coverage of 

grain boundaries by carbon and phosphorus atoms at a temperature of 500°C, if you know 

that the atomic weight of carbon is 12.01, atomic weight of phosphorus is 30.97 and atomic 

weight of iron is 55.85 

Result: 

In the given Fe-C-P system at a temperature of 500°C, the rate of equilibrium 

coverage of the grain boundaries by carbon atoms is 0.882, while the rate of 

equilibrium coverage of the grain boundaries by phosphorus atoms is 0.080. 
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4.4.  Microsegregation at interphase boundaries 
 

 
Time to study: 0.5 hours 

 

 
 

Objective After reading this part, you should be able to: 

 

  Explain the concept of microsegregation at interphase boundaries. 

 

 Describe the segregation of hydrogen at interphase boundaries in steels 

and explain what consequences this segregation may have 

 

 

 
Presentation  

 

In addition to the grain boundaries, the surface active elements may segregate at many 

interphase boundaries, such as boundaries between nonmetallic inclusions and metal 

matrix, or boundaries between various precipitates and metal matrix. For the case of 

segregation at interphase boundaries, essentially all is true that was derived in Section 4.2 

for the case of microsegregation at the grain boundaries.  

Rate of coverage of the interphase boundary by segregating element i in the binary system  

M-i can be expressed by the equation:  
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where IF is the interphase boundary; other quantities are analogous to quantities in 

Equation 4.2. 

 

From a practical point of view, significant is the segregation of hydrogen at interphase 

boundaries between nonmetallic inclusions and matrix in steels, as this segregation may 

cause the so called hydrogen embrittlement, which is a very dangerous degradation 

mechanism of steel. In hydrogen atoms, which segregate at the interphase boundary 

between nonmetallic inclusions and matrix, recombination of atoms may in fact occur to 

form hydrogen molecules H2. Hydrogen molecules induce such high stresses in the vicinity 

of the boundary that cracks may develop. Examples of hydrogen-induced cracking at the 

boundary between nonmetallic inclusions and matrix are shown in Figures 4.15 to 4.17. 

Interaction energies for the segregation of hydrogen at interphase boundaries for different 

types of particles vary within a relatively wide range; the interval between 30 to 90 kJ/mol 
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is specified. High levels of interaction energies for the hydrogen segregation were detected 

e.g. with particles of aluminium nitrides AlN, or titanium carbides TiC in steels. 

 

 

Fig. 4.15 Examples of cracks initiated at the boundary between globular oxide inclusions 

and matrix as a result of hydrogen segregation 

 

 

Fig. 4.16 Examples of cracks initiated at the boundary between globular oxide inclusions 

and matrix as a result of hydrogen segregation 
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Fig. 4.17 Examples of cracks initiated at the boundary between globular oxide inclusions 

and matrix as a result of hydrogen segregation 

 

 

 
Summary of terms of 4.4 

After studying this part, following terms should be clear to you: 

 Segregation at interphase boundaries 

 Hydrogen segregation 

1.  

 
Questions to 4.4 

17. On what types of interphase boundaries the segregation in metallic materials occurs 

most frequently 

18. Why is the segregation of hydrogen at the boundary of nonmetallic inclusions and 

matrix in steels so important? 

19. What can form hydrogen atoms, which segregate at the boundary of nonmetallic 

inclusions? 
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Other sources 

 
Callister W.D. jr., Rethwisch D. G.: Fundamentals of Materials Science and 

Engineering. An Integrated Approach. Hoboken: Wiley, 2008. 3rd ed. 882 p. ISBN 

978-0-470-12537-3. 
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Key to the solution 

O 4.1 Macrosegregations occur as a result of liquation during solidification. 

O 4.2 For the majority of elements in steels, the value of the partition coefficient is less than 1, 

i.e. they liquate into the liquid phase - melt. 

O 4.3 No, macrosegregation cannot be eliminated by annealing, because diffusion across such 

a long distance is absolutely unreal. 

O 4.4 Dendrites are crystals that grow into the melt at certain preferential crystallographic 

directions in the event that the temperature of the melt away from the boundary with the 

solid phase decreases.  

O 4.5 The dendritic segregation occurs across the distances of tens to hundreds of micrometres. 

O 4.6 The intensity of dendritic segregation can be reduced by homogenization annealing. 

O 4.7 Elements that have the ability to segregate at the grain boundaries are called surface-active 

elements. 

O 4.8 The driving force for segregation at the grain boundaries is the reduction of the free 

enthalpy of the system.  

O 4.9 At equilibrium state, the lower is the temperature, the higher is the rate of coverage of the 

grain boundaries by a segregating element. 

O 4.10 The rate of coverage of grain boundaries in the equilibrium segregation is highest at the 

lowest temperature. 

O 4.11 We can encounter the non-equilibrium segregation primarily at low temperatures, up to 

about 300-400°C.  

O 4.12 In the case of non-equilibrium segregation, the rate of coverage of grain boundaries usually 

increases with the increasing temperature. 

O 4.13 Competitive segregation means that one segregating element segregates preferentially and 

reduces the segregation of another surface-active element. 

O 4.14 Competitive segregation is applied for example in the case of C-P, S-P, Mo-P,B-P, etc. 

O 4.15 Competitive segregation may be beneficial in many cases, because it can reduce the 

segregation of a harmful element (e.g., Mo-P, C-P, etc.).  

O 4.16 The interactive segregation characterized a phenomenon where the segregations of two (or 

more) surface-active elements support each other.  

O 4.17 The segregation occurs at the boundaries between nonmetallic inclusions – matrix, 

precipitates - matrix, etc. 

O 4.18 Hydrogen segregation is important because it is dangerous; it may cause the hydrogen 

embrittlement, especially in steels. 

O 4.19 The hydrogen atoms, which segregate at the boundary of non-metallic inclusions, may 

create molecules that induce stress which can lead to the development of cracks. 
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